Primer on HFCs

Fast action under the Montreal Protocol can limit growth of hydrofluorocarbons (HFCs), prevent 100 to 200 billion tonnes of CO$_2$-eq by 2050, and avoid up to 0.5°C of warming by 2100.
Lead authors
Durwood Zaelke, Nathan Borgford-Parnell, and Stephen O. Andersen.

Contributing authors
Kristin Campbell, Xiaopu Sun, Dennis Clare, Claire Phillips, Stela Herschmann, Yuzhe Peng Ling, Alex Milgroom, and Nancy J. Sherman.

Acknowledgements
We thank our outside reviewers for their valuable contributions.

About the Institute for Governance & Sustainable Development (IGSD)

IGSD’s mission is to promote just and sustainable societies and to protect the environment by advancing the understanding, development, and implementation of effective and accountable systems of governance for sustainable development.

Beginning in 2005, IGSD embarked on a “fast-action” climate mitigation campaign that will result in significant reductions of greenhouse gas emissions and will limit temperature increase and other climate impacts in the near term. The focus is primarily on strategies to reduce non-CO$_2$ climate pollutants as a complement to cuts in CO$_2$, which is responsible for more than half of all warming. It is essential to reduce both non-CO$_2$ pollutants and CO$_2$. Neither alone is sufficient to limit the increase in global temperature to a safe level.

IGSD’s fast-action strategies include reducing emissions of short-lived climate pollutants—black carbon, methane, tropospheric ozone, and hydrofluorocarbons. They also include measures to promote energy efficiency of air conditioners and other appliances, and measures to capture, reuse, and store CO$_2$ after it is emitted, including biosequestration and mineralization strategies that turn carbon dioxide into stable forms for long-term storage while enhancing sustainable food supply.

Institute for Governance & Sustainable Development

This HFC Primer also is available on IGSD’s web site (http://www.igsd.org/primers/hfc/) with active links to the references and periodic updates. IGSD’s Primer on Short-Lived Climate Pollutants also is available on IGSD’s web site. Unless otherwise indicated, all content in the Primer carries a Creative Commons license, which permits non-commercial re-use of the content with proper attribution. Copyright © 2016 Institute for Governance & Sustainable Development.
Table of Contents

1. Summary
2. HFCs are used primarily as refrigerants and to make insulating foams
3. High growth rates for HFCs will cause significant global warming
4. Phasing down HFCs will prevent significant warming and climate impacts
5. Phasing down HFCs will catalyze energy efficiency and significant CO₂ reductions
6. Energy efficient alternatives to HFCs exist in almost every sector
7. Companies are taking action ahead of an amendment to phase down HFCs
8. A growing number of nations and regions are phasing down HFCs ahead of an amendment
9. The Montreal Protocol has the experience and expertise to phase down HFCs
10. Phasing down HFCs can be achieved at a low cost
11. A total of 95 Parties have submitted proposals to amend the Montreal Protocol to phase down HFCs
12. Consensus exists to amend the Montreal Protocol in 2016 to phase down HFCs
13. Conclusion

Figures and Tables

Fig. 1: Projected growth in HFCs and climate forcing from emissions
Fig. 2: High HFC emissions confirmed by global measurements
Fig. 3: By 2050 forcing from HFCs could equal 20–25% of the growth of CO₂ forcing since 2000
Fig. 4: Climate protection from the Montreal Protocol and Kyoto Protocol
Fig. 5: 21st Century warming that can be prevented by mitigating SLCPs and CO₂
Fig. 6: Avoided sea-level rise at 2100 due to aggressive CO₂ and SLCP mitigation
Fig. 7: Map of countries with existing HFC regulations
Fig. 8: Projected emission reductions from HFC amendment proposals

Table 1: 500-megawatt power plants avoided by 2030 and 2050 from combined transition for split room air conditioners

Table 2: Indicative list of low-GWP alternatives to high-GWP HFCs
Table 3: Examples of corporate reductions of HFCs
Table 4: Select national and sub-national HFC regulations

List of acronyms and abbreviations

Appendix I: The Dubai Pathway on Hydrofluorocarbons

Appendix II: Background on IGSD’s fast-action campaign to phase down HFCs and other short-lived climate pollutants
Fast action under the Montreal Protocol can limit growth of HFCs, prevent 100 to 200 billion tonnes of CO₂-eq emissions by 2050, and avoid up to 0.5°C of warming by 2100, with additional climate benefits from parallel improvements in energy efficiency of air conditioners and other appliances.

1. Summary

In November 2015, the Dubai Meeting of Parties to the Montreal Protocol agreed to launch formal negotiations on a proposed amendment to phase down hydrofluorocarbon (HFC) production and consumption, and agreed to a roadmap to work to an amendment in 2016. In December 2015, Parties to Climate Convention (COP21) meeting in Paris agreed to an ambitious goal of limiting global warming to “well below 2°C above pre-industrial levels,” aiming for 1.5°C, and for net zero emissions in the second half of the century. The Parties also agreed to “ensure the highest possible efforts” for pre-2020 mitigation, which puts further emphasis on the need for fast mitigation opportunities such as a phase down of HFCs. This Primer describes how the Montreal Protocol, with further support from national and regional laws and institutions, will quickly phase down HFC production and consumption.

HFCs are the fastest growing greenhouse gases in much of the world, increasing at a rate of 10–15% per year. They are factory-made gases that were once necessary to replace ozone-depleting substances, but today are no longer needed in most sectors, including air conditioning, refrigeration, and foam insulation. At least 95 countries have indicated their support for proposals to amend the Montreal Protocol to phase down HFCs, as submitted by a coalition of island States (Federated States of Micronesia, Kiribati, Marshall Islands, Mauritius, Palau, the Philippines, Samoa, and Solomon Islands), India, the E.U., the U.S., Canada, and Mexico, and the 54 members of the Africa Group.

A fast phase down of HFCs under the Montreal Protocol by 2020 would prevent 100 to 200 billion tonnes (Gt) of CO₂-equivalent (CO₂-eq) emissions by 2050, and avoid up to 0.5°C warming by 2100, using a treaty that requires developed countries to act first, provides implementation assistance to developing countries, and has the experience and expertise to ensure that reductions are fast, effective, and efficient. In addition, an HFC phasedown under the Montreal Protocol would, as has always been the case in the past, catalyze significant energy efficiency gains in air conditioning and refrigeration systems, in the range of 30 to 60%, and significantly reduce CO₂ emissions. In the room air conditioning sector alone, improving energy efficiency 30% could provide additional climate mitigation of nearly 100 Gt CO₂-eq by 2050, and save an amount of electricity equivalent to up to 2,500 medium-sized power plants. Further incentives would help ensure that all of the energy efficiency gains are captured as quickly as possible.

An amendment to phase down HFCs under the Montreal Protocol in 2016 will provide a level playing field for producers and consumers in lieu of a growing patchwork of regional and national regulations. Meanwhile, governments and leading companies in the E.U., Japan, U.S., and elsewhere are already taking action to phasedown HFCs.

2. HFCs are used primarily as refrigerants and to make insulating foams

HFCs are factory-made chemicals primarily produced for use in refrigeration, air conditioning, insulating foams, and aerosol propellants, with minor uses as solvents and for fire protection. HFCs were developed in order to replace chlorofluorocarbons (CFCs) that have already been phased out and hydrochlorofluorocarbons (HCFCs) that are currently being phased out under the Montreal Protocol in order to put the stratospheric ozone layer on a path to recovery. HFCs are very powerful greenhouse gases, trapping thousands of times more heat in the atmosphere per unit of mass than CO₂. HFC-134a is the most abundant and fastest growing HFC; it has an atmospheric lifetime of 13.4 years and a global warming potential (GWP) of 1,300. A recent study found that annual emissions of HFC-134a in 1995 were 0.023 Gt CO₂-eq, but increased nearly tenfold to 0.22 Gt CO₂-eq in 2010.

According to research by NASA, HFCs are also weak ozone-depleting substances and cutting them would “reduce the HFC impacts on the stratosphere, lessen the temperature and circulation responses and resulting ozone depletion.” Although the process is more complex than that of the ozone-depleting substances (ODSs) they replace, the ozone-depleting potentials (ODP) of some HFCs are equivalent to or larger than those of several HCFCs controlled under the Montreal Protocol.
HFCs were first commercialized in the early 1990s, and have caused only 1% of total global warming to date; however, production, consumption, and emissions of these factory-made gases are growing at a rate of 10–15% per year, which will cause a doubling every five to seven years. HFC growth is accelerating as HFCs are used as substitutes to replace HCFCs and as the demand grows for the appliances that use these refrigerants. See Figure 1. HFCs and other fluorinated greenhouse gases are the fastest growing climate pollutants in many countries, including the U.S., E.U., Australia, China, and India.

3. High growth rates for HFCs will cause significant global warming

Atmospheric measurements confirm the high growth rates of HFCs used as substitutes for previous ODSs. According to the measurements, emissions of these HFC substitutes are now twice as high as those reported to the United Nations Framework Convention on Climate Change (UNFCCC), implying that developing countries (which are not required to report emissions to the UNFCCC) now account for nearly 50% of global HFC emissions. See Figure 2. Historically, developed countries have contributed to the majority of global HFC emissions, but as temperatures, incomes, and consumption continue to rise in developing countries, they are beginning to represent a larger portion of total HFC emissions. For example, since 1995 the U.S. has contributed 45% of the global emissions of HFC-134a, but the growing demand of vehicles in Asia is contributing to an increase in HFC-134a emissions in developing countries even as the growth rate in developed countries has begun to slow.
Without fast action, HFC forcing will increase as much as thirty-fold by 2050, from a forcing of 0.012 W/m² to as much as 0.40 W/m².27 Continued growth in HFCs will add up to 0.1°C of global average temperature rise by mid-century, which will increase up to five-fold to 0.5°C by 2100.28

If left unchecked, by 2050, annual HFC emissions could be equivalent to 12\% of annual CO\textsubscript{2} emissions under a business-as-usual (BAU) scenario, and up to 71\% of annual CO\textsubscript{2} emissions under the Intergovernmental Panel on Climate Change’s (IPCC) strongest mitigation scenario.29 Such uncontrolled growth in HFCs would cancel much of the climate benefit achievable under an aggressive CO\textsubscript{2} 450 ppm mitigation scenario. See Figure 3.

In addition to direct emissions, by 2050, the unchecked growth of HFC production and use will also produce between 39–64 GtCO\textsubscript{2}-eq of HFCs trapped in millions of refrigerators, air conditioners, and other cooling equipment, as well as in chemical stockpiles and foams, collectively known as “HFC banks.”30 These HFCs banks will slowly emit their stored HFCs over a few decades, further contributing to global warming.31
Fig. 3: By 2050 forcing from HFCs could equal 20-25% of the growth of CO₂ forcing since 2000

“Clearly, the contribution of HFCs to radiative forcing could be very significant in the future; by 2050, it could be as much as a quarter of that due to CO₂ increases since 2000 if the upper range HFC scenario is compared to the median of the SRES scenario [Special Report on Emissions Scenarios, establishing a baseline scenario]. Alternatively, the contribution of HFCs to radiative forcing could be one-fifth the radiative forcing due to CO₂ increases since 2000 if the upper range HFC scenario is compared to the upper range of the SRES scenario.” UNEP (2011) HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT.

4. Phasing down HFCs will prevent significant warming and climate impacts

A fast phasedown of high-GWP HFCs has the potential to prevent the equivalent of up to 8.8 Gt CO₂ per year in emissions by 2050. The proposed phasedown will avoid up to 0.5°C of warming by 2100 under the high-HFC growth scenario, and up to 0.35°C under the low-HFC growth scenario. A more ambitious strategy of completely eliminating the use of high-GWP HFCs by 2020, would avoid emissions equivalent to between 91–146 Gt CO₂ by 2050, plus an additional amount equivalent to 50 Gt CO₂ (39–64 Gt) that would otherwise be trapped in HFCs banks, for a combined total of up to 200 or more Gt CO₂-eq. These avoided emissions from HFCs are equal to two-thirds of the projected 307 (192–439) Gt CO₂ of future emissions from the lifetime operation of existing power plants constructed as of 2012. Avoiding this warming is essential for staying within the long-term international goal of stabilizing global temperature rise to well below 2°C above pre-industrial temperatures by the end-of-century, while pursuing efforts to limit warming to 1.5°C. See Figure 5.
Fig. 4: Climate protection from the Montreal Protocol and Kyoto Protocol

Fig. 5: 21st Century warming that can be prevented by mitigating SLCPs and CO₂

Figure [5] “[D]epicts model simulated temperature change under various mitigation scenarios that include CO₂ and SLCPs (BC, CH₄, HFCs). BAU case (red solid line with spread) considers both high and low estimates of future HFC growth. Note this uncertainty of temperature projection related to HFC scenarios is around 0.15°C at 2100. The vertical bars next to the curve show the uncertainty of temperature projection at 2100 due to climate sensitivity uncertainty.” Yangyang Xu, Durwood Zaelke, Guus J.M. Velders, & Veerabhadran Ramanathan (2013) *The role of HFCs in mitigating 21st century climate change*. Atmos. Chem. Phys. 13:6083-6089.
Fast mitigation of HFCs combined with mitigation of the other short-lived climate pollutants (SLCPs)—black carbon, methane, and tropospheric ozone—can avoid 0.6°C of future warming by 2050, and up to 1.5°C by end-of-century, with HFC mitigation contributing one-third of the avoided warming by end-of-century.\(^\text{39}\) See Figure 5.

Fast action to phase down all four SLCPs “would cut the cumulative warming since 2005 by 50\% at 2050 and by 60\% at 2100.... Based on our high HFC growth scenarios, the contribution to the avoided warming at 2100 due to HFC emission control is about 40\% of that due to CO\(_2\) emission control.”\(^\text{40}\)

Reducing HFCs and the other SLCPs can significantly reduce future climate impacts, including slowing sea-level rise. Research led by Professor Veerabhadran Ramanathan at Scripps Institution of Oceanography, University of California, San Diego, calculates that cutting SLCPs can reduce the rate of sea-level rise by almost 20\% by 2050 and nearly 25\% by 2100; adding immediate and aggressive CO\(_2\) mitigation can double the end-of-century reductions.\(^\text{41}\) Combining SLCP and CO\(_2\) mitigation can reduce cumulative sea-level rise by 31\% in 2100.\(^\text{42}\) Individual contributions to avoided sea-level rise by 2100 from different mitigation actions are: 29\% from CO\(_2\) mitigation and 71\% from SLCP mitigation (13\% from HFC mitigation, 17\% from black carbon mitigation, and 41\% from methane mitigation).\(^\text{43}\) See Figure 6.

Fig. 6: **Avoided sea-level rise at 2100 due to aggressive CO\(_2\) and SLCP mitigation**

![Figure 6]({\text{image-url}})

“*Avoided sea-level rise at 2100 due to aggressive mitigation of long-lived CO\(_2\) and SLCPs. Such aggressive actions can reduce the rise in sea levels by 35 cm (uncertainty range is 17–70 cm) from the projected sea-level rise of 112 cm (49–210 cm) under a business-as-usual scenario for emissions (Representative Concentration Pathway (RCP) 6.0). The pie chart shows percentage contribution of each pollutant. Mitigation of the SLCP methane would lead to reductions in tropospheric ozone, another SLCP, and hence the pie chart includes both. As a long-lived pollutant, CO\(_2\) plays a substantial role (blue section), but reduction in SLCPs (shown in darker colours) would lead to a larger degree of avoided sea level. (Under a more intensive business-as-usual RCP8.5 level, reductions in CO\(_2\) would increase the share of CO\(_2\) mitigation to 50\%).” From David G. Victor, Durwood Zaelke, & Veerabhadran Ramanathan (July 2015) *Soot and short-lived pollutants provide political opportunity*, NATURE CLIMATE CHANGE (based on Hu, A., Y. Xu, C. Tebaldi, W. M. Washington, and V. Ramanathan (2013), *Mitigation of short-lived climate pollutants slows sea-level rise*, NATURE CLIMATE CHANGE, 3, 1–5.)

5. Phasing down HFCs will catalyze energy efficiency and significant CO\(_2\) reductions

In addition to the direct climate benefits from HFC mitigation, a global HFC phasedown will catalyze additional climate benefits through improvements in the energy efficiency of the refrigerators, air conditioners, and other products and equipment that use HFC refrigerants. Complementary measures to commercialize super-efficient appliances and to encourage consumers to choose these energy efficient appliances can multiply the climate benefits. These efficiency gains will significantly reduce CO\(_2\) emissions. Depending on the application, generation mix, and fuel type, emissions from generating electricity account for between 70 and 95\% of total climate emissions attributable to products using refrigerants.\(^\text{44}\)

The phaseout of CFCs under the Montreal Protocol, which began in the mid-1980s, catalyzed substantial improvements in air conditioning and refrigerant energy efficiency—up to 60\% in some subsectors.\(^\text{45}\) These efficiency improvements were the result of replacing old products and equipment with a new generation of higher efficiency
Global companies that are replacing CFC-based machines. When refrigeration and air conditioning manufacturers redesigned their systems to be CFC-free, many took the opportunity to improve the efficiency of their designs. For example, the United States Environmental Protection Agency (U.S. EPA) estimated that CFC-free chillers were up to 50% more energy efficient in the U.S.\(^4\) and the Global Environment Facility estimated the chillers were over 30% more efficient in India than the CFC-based machines they replaced.\(^4\)

Similar energy efficiency improvements are expected with an HFC phasedown. Case studies of recent demonstration projects presented by the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC) calculated energy savings of up to 15% to 30%, and carbon footprint reductions of 60% to 85% for refrigeration in commercial food stores.\(^5\)

A number of global companies that are already making the transition away from HFCs report significant gains in energy efficiency. For example, the Coca-Cola Company and PepsiCo have reported energy efficiency gains of up to 47% in their new CO\(_2\) and hydrocarbon-based refrigeration equipment over baseline HFC models.\(^6\) Global supermarket chains Tesco and Unilever both reported a 10% gain from new hydrocarbon-based commercial refrigeration equipment and freezer cabinets over HFC-models.\(^7\)

Recent calculations by scientists at Lawrence Berkeley National Laboratory confirm that in the room air conditioning sector improving efficiency could avoid \(\sim 25\) Gt of CO\(_2\) emissions in 2030, \(\sim 33\) Gt in 2040, and \(\sim 40\) Gt in 2050, for cumulative mitigation up to \(\sim 98\) Gt.\(^8\) Room air conditioning is an important target for efficiency programs due to rapidly expanding consumer cooling markets in emerging economies; an additional 700 million units will be added to the global stock of air conditioners by 2030.\(^9\) The market for room air conditioning is growing 10–15% per year in many emerging economies, including India, China, and Brazil, and straining often weak grids.\(^10\) Ownership of room air conditioners in India, for example, is projected to increase to 73% in 2030 from 30% in 2020.\(^11\) Air conditioning accounts for a significant percentage of peak energy load in hot climates, such as Delhi, India, where it represents 40–60% of peak electricity demand.\(^12\)

According to Lawrence Berkeley National Laboratory, a combined transition to low-GWP refrigerants and higher efficiency air conditioning could produce energy savings in peak demand equal to 544–1,270 gigawatts (GW) of electricity by 2050.\(^13\) This would avoid (or free up for other uses) an amount of electricity equal to the production of between 680 and 1,587 medium-sized peak-load coal power plants by 2030, and between 1,090 and 2,540 by 2050.\(^14\) Over the next 15 years, the potential energy savings in India alone from improving the energy efficiency of room air conditioning is the equivalent of up to 142 new medium-sized (500 MW) coal power plants.\(^15\) Other countries would also see significant energy savings. See Table 1. These efficiency gains also would lower the cost of operating the air conditioning, ease pressure on overloaded electricity grids, and save consumers money.\(^16\)

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>NUMBER OF AVOIDED 500 MW PEAK-LOAD POWER PLANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2030</td>
</tr>
<tr>
<td>Brazil</td>
<td>31–72</td>
</tr>
<tr>
<td>Chile</td>
<td>1–2</td>
</tr>
<tr>
<td>China</td>
<td>265–619</td>
</tr>
<tr>
<td>Colombia</td>
<td>4–10</td>
</tr>
<tr>
<td>Egypt</td>
<td>6–14</td>
</tr>
<tr>
<td>India</td>
<td>61–142</td>
</tr>
<tr>
<td>Indonesia</td>
<td>40–93</td>
</tr>
<tr>
<td>Mexico</td>
<td>4–9</td>
</tr>
<tr>
<td>Pakistan</td>
<td>3–6</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>4–9</td>
</tr>
<tr>
<td>Thailand</td>
<td>12–27</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>2–4</td>
</tr>
<tr>
<td>Vietnam</td>
<td>13–30</td>
</tr>
<tr>
<td>Global</td>
<td>680–1587</td>
</tr>
</tbody>
</table>

Table 1: 500-megawatt power plants avoided by 2030 and 2050 from combined transition for split room air conditioners.\(^17\)
6. Energy efficient alternatives to HFCs exist in almost every sector

Low-GWP alternatives to high-GWP HFCs are widely and increasingly available. See Table 2. Alternatives to existing high-GWP HFCs fall into two basic categories: non-fluorinated substances with low-GWP, and fluorinated substances with low- to mid-range GWPs. The Montreal Protocol’s Technology and Economic Assessment Panel (TEAP) uses the term “low-GWP” to refer to refrigerants with 100-year GWPs of 300 or lower while “moderate-GWP” refers to refrigerants with GWPs of 1,000 or lower. For comparison, the GWP100 yr of HFC-134a, one of the most commonly used high-GWP HFC refrigerants today, is 1,300.

In sectors where a lower-GWP alternative has been identified, the next steps will be to develop equipment, gain regulatory approval, address any servicing needs, and determine if a drop-in solution is available. TEAP cautions that differences in energy efficiency, refrigerant charge size, and refrigerant leak rates could determine which “low-GWP” or “moderate-GWP” alternatives would have the lowest overall impact on global warming. The most comprehensive way to evaluate the climate impact of any proposed refrigerant is to use Life Cycle Climate Performance (LCCP) methodology to calculate “cradle-to-grave” climate emissions for a particular refrigerant and application. LCCP was developed by TEAP and U.S. EPA and includes direct and indirect climate emissions, energy embodied in product materials, climate emissions during chemical manufacturing, and end-of-life loss (typically refrigerant leakage). See Section 5 for a discussion of the energy efficiency gains that will be catalyzed by an HFC phasedown.

Commercially available non-fluorinated or “natural refrigerants” include ammonia with a GWP of near zero, hydrocarbons (e.g., propane and isobutene) with GWPs of less than four, and CO₂ with a GWP of one. Alternative fluorinated substances include primarily the low-GWP HFCs, also known as “HFOs”, including HFC-1234yf and HFC-1234ze with IPCC Firth Assessment Report (AR5) calculating a GWP100 yr of less than one. Another alternative is HFC-32, with a GWP100 yr of 677 according to the AR5. Blends of HFC-32 are also being explored as a means to further reduce GWP and flammability without sacrificing efficiency. There are other alternative methods and processes that do not involving chemical refrigerants. These are termed “not-in-kind” alternatives.

In the mobile air conditioning sector, which represents up to half of HFC emissions on a CO₂-eq basis, available low-GWP alternatives include HFC-1234yf, CO₂ and HFC-152a (AR5 GWP100 yr = <1, 1, and 138, respectively). Currently, more than a dozen vehicle manufacturers in Europe, Japan, and North America have vehicles with the low-GWP refrigerant HFC-1234yf in the global market, and in March 2016, Honeywell announced plans to work with Navin Fluorine International Limited (NFIL), an Indian manufacturer, to increase global production capacity of HFC-1234yf. Daimler announced in October 2015 that they will commercialize CO₂ as a low-GWP alternative for two of their vehicles, with the rest scheduled to use HFO-1234yf for the immediate future. In Norway, approximately 16% of new refrigerated truck and trailer systems were equipped with CO₂ cryogenic refrigeration systems in 2011; use of these systems is expected to expand further in the future.

In commercial refrigeration, globally, up to 65% of new installations are using low-GWP HFC alternatives, including CO₂, ammonia, and hydrocarbons, while in the domestic refrigeration sector, low-GWP hydrocarbon technology is expected to reach about 75% of global production by 2020. See Table 3 for examples of companies that have already made the switch to low-GWP alternatives in the refrigeration sector.

In the room air conditioning sector, thousands of hydrocarbon units have been sold and new production lines are coming on line each year. The Indian manufacturer, Godrej, and the Chinese manufacturer, Gree, have developed models of propane (HC-290) room air conditioners. The Godrej models are up to 11% more efficient than the minimum requirements for the 5-Star energy efficiency rating set by the Indian Bureau of Energy Efficiency. China, Japan, India, Indonesia, and other countries have commercialized products using moderate-GWP HFC-32 with high levels of operating efficiency. CO₂ air conditioning prototypes are also available.

In the foam sector, low-GWP alternatives include hydrocarbons, CO₂/water, and fibrous materials. Hydrocarbons and CO₂/water make up 28% to 76% of the global market for new polyurethane foam products, while fibrous materials comprise 59% of the new market for insulation in Western Europe. HFC-1233zd(E) is a liquid blowing agent that has a GWP of about one, and is up to 12% more energy efficient than leading hydrocarbon alternatives, according to the companies making it. Companies are developing additional low-GWP HFC alternatives and a number of developing country Parties intend to adopt low-GWP alternatives for foam products as part of their HCFC phaseout plans.

In all major sectors, the best available low-GWP alternatives to high-GWP HFCs demonstrate at least equal, and often greater, energy efficiency than the HFCs they replace—up to 30% greater. A 2011 study for the European Commission concluded that technically feasible and cost-effective low-GWP alternatives exist for all major HFC subsectors. This analysis, which was prepared in association with industry, research institutes, and other technical
experts, analyzed HFC alternatives available in 26 subsectors; all alternatives identified achieved at least equal energy efficiency and more often resulted in energy savings compared to commercially available HFC-based equipment. The TEAP also concluded that low-GWP alternatives are available that achieve equal or superior energy efficiency in a number of sectors stating, “hydrocarbon and ammonia systems are typically 10–30% more energy efficient than conventional high-GWP HFC systems.” Tests of room air conditioning utilizing hydrocarbon refrigerants showed energy improvements of up to 20% over HFC models. Fluorinated refrigerant producers also report high levels of energy efficiency with use of their air conditioning products, particularly in hot climates. In Japan, an HFC-32 room air conditioner was awarded the 2012 Grand Prize for Excellence in Energy Efficiency and Conservation and the prestigious “Top Runner” designation as the most energy efficient room air conditioning available. In the commercial refrigeration sector, supermarkets are improving energy efficiency by 15% as they switch to low-GWP alternatives. For example, Sobeys, Canada’s second largest food retailer found that the new CO₂ transcritical system used 18% to 21% less energy than the high-GWP HFC equipment it replaced.

Other not-in-kind alternatives are available for some applications, such as district cooling, which relies on water chilled in high efficiency central plants to cool a large number of buildings. If powered by low carbon sources of energy, such as hydroelectric, wind, or solar, refrigeration and air conditioning equipment using low-GWP refrigerants can have limited climate impact.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>CURRENT REFREGERANT</th>
<th>GWP</th>
<th>ALTERNATIVE</th>
<th>GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration (Domestic)</td>
<td>HFC-134a 1.300</td>
<td></td>
<td>HC-600 (isobutene) ~3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-152a 138</td>
<td></td>
<td>HC-290 (propane) <5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFO-1234yf <1</td>
<td></td>
</tr>
<tr>
<td>Refrigeration (Commercial & Industrial)</td>
<td>HFC-22 1.760</td>
<td></td>
<td>HC-600 (isobutene) ~3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-407C 1.774</td>
<td></td>
<td>R-744 (CO₂) 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-134a 1.300</td>
<td></td>
<td>R-717 (ammonia) 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-404a 3.943</td>
<td></td>
<td>HFCs and HFC blends <1</td>
<td>1,600</td>
</tr>
<tr>
<td>Air Conditioners (Room)</td>
<td>HFC-410A 1923</td>
<td></td>
<td>HC-290 (propane) <5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-407C 1.774</td>
<td></td>
<td>HFC-32 677</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFC/HFC blends emerging</td>
<td>~350</td>
</tr>
<tr>
<td>Air Conditioners (Commercial)</td>
<td>HFC-134a 1.300</td>
<td></td>
<td>HFC-123zd <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-22 1.760</td>
<td></td>
<td>HFC-1234ze <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCFC-123 79</td>
<td></td>
<td>HFC/HFC blends emerging</td>
<td>400-500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFC-1234yf <1</td>
<td></td>
</tr>
<tr>
<td>Mobile Air Conditioners</td>
<td>HFC-134a 1.300</td>
<td></td>
<td>HFC-1234yf <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFC-152a 138</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R-744 (CO₂) 1</td>
<td></td>
</tr>
<tr>
<td>Foams</td>
<td>HFC-227ea 3.220</td>
<td></td>
<td>HC₇ <5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCFC-142b 1.9800</td>
<td></td>
<td>CO₂/water 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-245fa 1.030</td>
<td></td>
<td>HFC-1234ze <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-134a 1.810</td>
<td></td>
<td>Methyl formate <25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-134a 1.300</td>
<td></td>
<td>HFC-1336mzz-Z 2</td>
<td></td>
</tr>
</tbody>
</table>

HFC alternatives are further elaborated in Suely Carvalho, Stephen O. Andersen, Duncan Brack, & Nancy J. Sherman, *Alternatives to High-GWP Hydrofluorocarbons*, IGSD WORKING PAPER, (November 2014).

Energy efficient alternatives are important for all countries, particularly those with high ambient air temperatures with long and often humid seasons, including countries currently choosing replacements for HCFCs, which are being phased out under the Montreal Protocol. A study for the European Commission shows that, in countries with high ambient air temperatures, almost 70% of sectors currently using HCFCs can leapfrog past high-GWP HFCs refrigerants directly to low-GWP alternatives with equal or better energy efficiency. The same study notes that other low-GWP alternatives are in development and expected to be ready to replace the remaining uses by 2025. Recent tests by the U.S. Oak Ridge National Laboratory demonstrated that many low-GWP alternatives perform with similar
cooling capacity and efficiency in high ambient temperature conditions. An agreement to phase down HFCs under the Montreal Protocol will further accelerate development and deployment of additional climate-friendly alternatives.

7. Companies are taking action ahead of an amendment to phase down HFCs

Business support is growing for phasing down HFCs. The Consumer Goods Forum (CGF), a global network of over 400 retailers, manufacturers, and service providers from over 70 countries, pledged to begin phasing down HFCs by 2015. The Forum is now discussing “how best to drive scale-up beyond 2015, including the possibility of a new resolution.” Other industry groups support reducing HFCs under the Montreal Protocol, including the Air-Conditioning, Heating and Refrigeration Institute; the European Fluorocarbon Technical Committee; and Refrigerants, Naturally! The Alliance for Responsible Atmospheric Policy, whose nearly 100 members include Trane, Whirlpool, Sub-Zero, and Mitsubishi, also supports a global phasedown of high-GWP refrigerants. On 15 October 2015, sixteen U.S. and multinational companies made a variety of pledges to phase down HFCs and to commercialize alternatives.

Individual companies across the value chain are developing and implementing alternative refrigerants. The CCAC has produced a series of case studies demonstrating HFC alternatives developed and utilized by supermarket industry leaders, including Carrefour, H-E-B, and Supermercado.

On the retailer and point-of-sale side, the companies in Refrigerants, Naturally!, which includes Coca-Cola, PepsiCo, Red Bull, and Unilever, are taking action to eliminate the use of HFCs within their respective companies. Coca-Cola began using HFC-free insulation for new beverage vending equipment, which reduced direct HFC emissions by 75%, identified a feasible natural refrigerant, and pledged to eliminate HFCs in all new equipment by 2015. PepsiCo, Red Bull, Unilever, and Carrefour started installing a substantial amount of natural refrigerant point-of-sale equipment. Individual companies in the CGF, including Wal-Mart, Nestlé, Sobeys, Supervalu, and Tesco are purchasing alternative refrigerant equipment, converting existing equipment, and improving efficiency while reducing leakage. In 2014 Whirlpool converted all foam blowing agents used in the manufacture of refrigerators and freezers sold in North America from HFC-245fa (AR5 GWP100-yr = 858) to HFC-123zd(E) (GWP100-yr = -1), a reported reduction in GWP of 99.9%. See Table 3 for a summary of several of these measures.

Table 3: Examples of corporate reductions of high-GWP HFCs

<table>
<thead>
<tr>
<th>COMPANIES</th>
<th>ACHIEVEMENTS & GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PepsiCo27</td>
<td>240,000 HFC-free units</td>
</tr>
<tr>
<td></td>
<td>HFC-free equipment in 30 countries with 100% natural refrigerants in Turkey since 2009 and Russia since 2011</td>
</tr>
<tr>
<td>The Coca-Cola Company28</td>
<td>1,700,000 HFC-free units as of January 2016</td>
</tr>
<tr>
<td></td>
<td>100% HFC-free insulating foam for new refrigeration equipment</td>
</tr>
<tr>
<td></td>
<td>100% HFC-free new cold drink equipment purchases as of the end of 2015</td>
</tr>
<tr>
<td>Red Bull29</td>
<td>457,000 ECO-Coolers (more than 50% of all units) as of the end of 2013</td>
</tr>
<tr>
<td></td>
<td>Procurement 100% hydrocarbon since 2010</td>
</tr>
<tr>
<td>Unilever30</td>
<td>800,000 HFC-free freezers in 2012</td>
</tr>
<tr>
<td></td>
<td>Working with their subsidiary Ben & Jerry’s to roll out hydrocarbon ice cream freezers in U.S.</td>
</tr>
<tr>
<td>McDonal31</td>
<td>3,300 HFC-free meat freezers, frozen food storage, reach-ins & salad refrigerated display cases 2012. Investing in ammonia industrial refrigeration in U.S.</td>
</tr>
<tr>
<td>Nestlé32</td>
<td>11,000 hydrocarbon ice cream freezers in Europe, Australia, Spain, Malaysia, Chile, and the U.S.</td>
</tr>
<tr>
<td></td>
<td>Nestlé uses natural refrigerants in 90% of its industrial food processing refrigeration</td>
</tr>
<tr>
<td>Heineken33</td>
<td>130,000 hydrocarbon refrigerated beverage displays</td>
</tr>
<tr>
<td></td>
<td>Aiming for 50% reduction in carbon footprint of installed refrigerators by 2020</td>
</tr>
<tr>
<td>Sobeys34</td>
<td>“Natural Refrigerant Commitment” requires that CO2 refrigeration systems are installed in all new full-service stores</td>
</tr>
<tr>
<td>Whirlpool35</td>
<td>HFC-123zd(E) in all U.S. refrigerator and freezer manufacturing facilities by end of 2014</td>
</tr>
<tr>
<td></td>
<td>Equivalent to removing more than 400,000 cars from the road</td>
</tr>
</tbody>
</table>
8. A growing number of nations and regions are phasing down HFCs ahead of an amendment

Support to phase down HFCs is also growing at the national and regional levels. See Figure 7 and Table 4. China, the U.S., and the E.U., the top three global consumers of HFCs, have all announced new policies and regulations to control and reduce HFC emissions.136 In May 2014, the State Council of China announced that they would strengthen their management of HFC emissions and accelerate the destruction and replacement of HFCs, as part of the action plan to implement the energy conservation and emission reduction targets of the 12th five-year plan.137 China’s action plan is expected to reduce HFC emissions by 0.28 Gt CO\textsubscript{2}-eq by 2015.138 The E.U. HFC regulations (“F-Gas Directive”), which went into effect on 1 January 2015, will phase down HFCs by 79%, from the baseline 2009–2012 levels, by 2030.139 In addition, as part of its regulatory regime to control HFCs, the European Directive on mobile air conditioning systems requires the use of refrigerants with GWPs less than 150; new type vehicles sold in the E.U. are covered as of 1 January 2013, and all vehicles sold in the E.U. will be covered by 2017.140 Global adoption of the best available technologies and alternatives required under existing E.U., U.S., or Japanese regulations would reduce cumulative (2015–2050) HFC emissions by 50% or more compared to the proposed North American HFC Amendment.141

![Fig. 7: Map of countries with existing HFC regulations (dark green)](image)

The U.S. is addressing HFCs at national and state levels. In June 2013, President Obama announced domestic action on HFCs as part of his Climate Action Plan.142 Both the U.S. House and Senate have introduced bills that would require the establishment of a U.S. task force to reduce HFCs and other super climate pollutants using existing authorities.143 In July 2015, the U.S. EPA issued a final rule banning and otherwise restricting various high-GWP HFCs in specific uses under the “Significant New Alternatives Policy Program” (SNAP) of the Clean Air Act.144 In March 2015, the President issued Executive Order 13693, which requires federal agencies to reduce direct GHG emissions by 40% by 2025 including through purchasing sustainable products identified by SNAP.145 In May 2015, the U.S. Department of Defense, NASA, and the General Services Administration proposed a rule that would direct the U.S. government to procure alternatives to high-GWP HFCs.146 Finally, the U.S. currently provides manufacturers of cars and light trucks the opportunity to earn credits toward their compliance with CO\textsubscript{2} emission standards and corporate average fuel economy (CAFE) standards by employing HFC alternative refrigerants in mobile air conditioning systems for model year 2012–2016 vehicles.147

In 2009, California passed refrigerant regulations expected to reduce F-gas emissions by 25% by 2020.148 In 2014, California passed a law that requires the California Air Resources Board (CARB) to develop a comprehensive strategy to reduce emissions of HFCs and other SLCPs by 1 January 2016.149 CARB released its draft SLCP Reduction Strategy for public comment September 2015, calling for more than 40% reduction in HFC emissions by 2030.150 Beginning in 2018, HFCs will also be regulated according to a statewide cap-and-trade system.151 California has also forged intrastate and international agreements concerning HFCs. In October 2013, California and India formed the India-California Air Pollution Mitigation Program (ICAMP)152 that includes future HFC mitigation.153

The CCAC is also targeting HFCs as part of its global effort to scale-up action to reduce SLCPs.154 Many CCAC state partners already have existing HFC policies, and six are developing national-level inventories of HFCs and identifying policies and measures to avoid the growth of high-GWP HFCs (Bangladesh, Chile, Colombia, Ghana, Indonesia, and Nigeria).155
Table 4: Select national and sub-national HFC regulations

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Taxes, Levies, Fees</th>
<th>Economic and Market-Based Incentives</th>
<th>Prohibition/Authorization</th>
<th>Required Practices</th>
<th>Voluntary Initiatives (Education Programs)</th>
<th>Import/Export Licensing</th>
<th>Reporting/Recordkeeping Requirements</th>
<th>Prioritization of Climate-Friendly Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe and Central Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraguay164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seychelles165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Korea168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Proposed legislation.
9. **The Montreal Protocol has the experience and expertise to phase down HFCs**

At the international level, there is now a consensus that HFCs can be most effectively controlled through the phasedown of their *production and consumption* under the Montreal Protocol as a complement to controls on *emissions* under the Kyoto Protocol. The Montreal Protocol has the experience and expertise to ensure a fast, effective, and efficient phasedown of HFCs, which are in the same family of gases, have similar chemical properties, and are used in the same sectors as the CFCs already phased out and the HCFCs currently being phased out. Because all CFCs and HCFCs are also greenhouse gases, between 1990 and 2010 the Montreal Protocol reduced CO$_2$-eq emissions nearly twenty times more than the 5 to 10 Gt CO$_2$-eq reduction goal of the first commitment period of the Kyoto Protocol. See Figure 4. Sophisticated statistical analysis confirms that the successful phaseout of CFCs and related chemicals by the Montreal Protocol, along with reductions of methane, slowed climate change and contributed to a lower rate of global warming since the early 1990s.

The Montreal Protocol has universal membership and provides robust implementation of the principle of “common but differentiated responsibilities.” This includes having developed country Parties undertake control measures first, followed by typical grace periods of 10 to 19 years before developing country Parties are subject to control measures, with funding for the agreed incremental cost of the developing country phaseout provided by the developed country Parties through the Multilateral Fund (MLF). The MLF has played a key role in achieving cost-effective emissions reductions. Since it was established in 1991, the MLF has provided more than US$ 3.3 billion in funding. At the 26th Meeting of the Parties (MOP) of the Montreal Protocol, in 2014, the Parties agreed to a MLF replenishment of just over US$500 million for 2015–2017.

The Montreal Protocol has an in-depth understanding of all sectors it finances, including detailed knowledge of technical options. The Montreal Protocol also supports institutional strengthening for all 147 developing country Parties. The combination of these features has allowed all Parties to comply with the control measures; to date, the Parties have phased out 98% of nearly 100 damaging chemicals.

The orderly and transparent schedule for phasing out chemicals under the Montreal Protocol allows time for markets to innovate and adjust, often resulting in significant cost and technical efficiencies. The Montreal Protocol also provides “essential use” and “critical use” exemptions that allow continued use of a chemical when environmentally acceptable alternatives are not yet available.

In sum, the Montreal Protocol can provide fast, effective, and efficient reductions of upstream production and consumption of HFCs, while downstream emissions would remain with the Kyoto Protocol, as would measurement and reporting.

10. **Phasing down HFCs can be achieved at a low cost**

Historically the Montreal Protocol has achieved significant reductions by phasing out production and consumption of ozone-depleting greenhouse gases at low cost. Between 1991 and 2010, the MLF paid out US$2.4 billion and achieved an estimated 188–222 Gt CO$_2$-eq in emissions reductions from the phaseout of CFCs and other fluorinated greenhouse gases, equivalent to less than US$0.01 per tonne of CO$_2$ reduced.

Recent analysis by the TEAP calculates that a phasedown of HFCs in the refrigeration and air conditioning sectors beginning in 2020 would cost the MLF 1.5 to 2 times more than the current funding for the ongoing HCFC phaseout. This would reduce HFC demand by 9.5 Gt CO$_2$-eq between 2020 and 2030, and would cost the MLF US$0.22–0.29 per tonne of CO$_2$-eq. Another study estimated that the total incremental cost of phasing down the use of high-GWP HFCs through 2050 would be €5–11 billion, which is less than €0.10 per tonne of CO$_2$-eq or “ten [MLF] replenishing periods with funding in the range of €500 to 1000 million from freeze to 2050.”

According to the TEAP, delaying the start date of the phasedown in the refrigeration and air conditioning sectors from 2020 to 2025, would increase the total cost to the MLF for converting manufacturing by 40% and costs for servicing by 250%. This five-year delay would reduce the climate benefit by more than half and increase the cost per tonne of CO$_2$-eq reduced to US$0.71–0.92.

The faster the world phases down high-GWP HFCs the less of these potent chemicals will be embedded in millions of products and equipment and gradually released over the course of several years or decades. By moving fast, the world can avoid the buildup of 50 (39–64) Gt CO$_2$-eq of unnecessary HFC banks by 2050, which can cost as much as US$35 or more per CO$_2$-eq tonne to collect and destroy compared to less than a dollar per tonne to avoid their production and consumption entirely.
11. A total of 95 Parties have submitted proposals to amend the Montreal Protocol to phase down HFCs

Recognizing the opportunity presented for fast and effective phasing down of HFCs through the Montreal Protocol, starting in 2009 the Federated States of Micronesia proposed an amendment to phase down high-GWP HFCs, with the U.S., Canada, and Mexico following with a similar amendment. Both proposals would reduce 85–90% of HFC production and consumption and provide climate mitigation equivalent to more than 100 Gt CO₂ emissions by 2050. In April 2015, the North American group submitted their newest proposal, dated 8 March 2015. On 17 April 2015, India submitted its own proposal to phase down high-GWP HFCs under the Montreal Protocol, reversing several years of opposition. On 20 April 2015, the 54 members of the Africa Group submitted an informal proposal in the form of a Conference Room Paper. On 30 April 2015, the E.U. submitted a proposal on behalf of its 28 member States. At the same time, the Federated States of Micronesia, the first country to submit a proposal in 2009, submitted a revised proposal along with seven other Pacific Island States as co-sponsors—Kiribati, Marshall Islands, Mauritius, Palau, the Philippines, Samoa, and Solomon Islands.

Fig. 8: Projected emission reductions from HFC amendment proposals

The proposed amendments to the Montreal Protocol have the potential to decrease the projected annual HFC emissions of 5.5 to 8.8 Gt CO₂-eq/yr in 2050 to less than ~0.3 Gt CO₂-eq/yr. The above graphic, based on Velders et al. (2009) is indicative of the emissions reductions expected from a phasedown of high-GWP HFCs under the Montreal Protocol. Prepared by Dr. Guus Velders, based on Velders, G. J. M. et al. (2009) The large contribution of projected HFC emissions to future climate forcing. PROC. NAT’L. ACAD. SCI. U.S.A. 106:10949-10954.

12. Consensus exists to amend the Montreal Protocol in 2016 to phase down HFCs

At MOP 27 in November 2015 the Parties agreed to “work within the Montreal Protocol to an HFC amendment in 2016.” Immediately prior to the MOP, the 36th Open-ended Working Group (OEWG) decided to form a contact group that will sort out issues relating to the feasibility of phasing down HFCs and ways to manage HFCs. This includes two OEWGs. The first was held 4 to 8 April in Geneva, Switzerland, at the end of which the Parties suspended the meeting and agreed to resume for two additional days. In addition, the Parties will hold their second OEWG from 18 to 21 July in Vienna, Austria. This will be followed by an extraordinary MOP from 22 to 23 July in Vienna, Austria. The regular MOP is scheduled from 10 to 14 October 2016 in Kigali, Rwanda. The following section outlines the growing support for addressing high-GWP HFCs under the Montreal Protocol:

2009

10 July 2009 in L’Aquila, Italy, the leaders of the G8 recognized “that the accelerated phase-out of HCFCs mandated under the Montreal Protocol is leading to a rapid increase in the use of HFCs, many of which are very potent GHGs,” and committed to “work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework.”

November 2009, 39 countries signed the Declaration on High-GWP alternatives to ODSs encouraging the Parties to the Montreal Protocol to “urgently consider phasing-down the production and consumption of high-GWP
alternatives,” including HFCs, and “take appropriate measures … as soon as practicable.”

2010

By the end of 2010, 108 Parties to the Montreal Protocol signed the Bangkok Declaration, calling for the use of low-GWP alternatives to CFCs and HCFCs.

2012

17 February 2012, along with the UNEP, the U.S., Mexico, Canada, Ghana, and Bangladesh launched the CCAC to catalyze major reductions in SLCPs with an initial focus on black carbon, methane, and HFCs.

19 May 2012, the leaders of the G8 in Camp David, U.S., agreed to join the CCAC and develop “strategies to reduce short term pollutants – chiefly methane, black carbon, and hydrofluorocarbons.”

22 June 2012, at the conclusion of the Rio + 20 UN Conference on Sustainable Development, more than one hundred heads of State adopted the conference declaration, The Future We Want, recognizing the climate threat from HFCs and calling for the gradual phasedown of their production and consumption; the UN General Assembly adopted the declaration by resolution on 11 September 2012.

2013

19 April 2013, China agreed to completely phase out HCFCs over the next 17 years, which is expected to cut the equivalent of 8 Gt CO₂ at a total cost of $385 million, or about $0.05 per tonne. The Montreal Protocol’s HCFC phaseout will eliminate HCFC production from emissive uses in developed country Parties by 2030 and in developing country Parties by 2040, and this agreement will give China the opportunity to choose low-GWP alternatives in lieu of HFCs to ensure that the climate benefits are realized.

Through May 2013, 112 Parties joined the even stronger Bali Declaration on Transitioning to Low Global Warming Potential Alternatives to Ozone Depleting Substances.

15 May 2013, the Arctic Council countries, including the Russian Federation, issued the Kiruna Declaration in which they “Urge the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer to take action as soon as possible, complementary to the UNFCCC, to phase-down the production and consumption of hydrofluorocarbons, which contribute to the warming of the Arctic region.”

8 June 2013, China’s President Xi Jinping and U.S. President Barack Obama agreed to “work together and with other countries to use the expertise and institutions of the Montreal Protocol to phase down the consumption and production of hydrofluorocarbons (HFCs).”

25 June 2013, U.S. President Obama announced his Climate Action Plan, which includes phasing down HFCs under the Montreal Protocol, as well as taking action in the U.S. to control HFCs.

26 June 2013, at the mid-year OEWG 33, in Bangkok, the Parties established a formal Discussion Group to discuss the management of HFCs under the Protocol.

28 June 2013 the BASIC countries (Brazil, South Africa, India, and China) noted in their Joint Statement that they would “work multilaterally to find an agreed way” to address HFCs:

“Ministers emphasized that HFCs are greenhouse gases covered under the UNFCCC and its Kyoto Protocol and shall accordingly be addressed in accordance with its principles and provisions. They agreed to work multilaterally to find an agreed way forward on this issue.”

10 July 2013, the U.S.-China Climate Change Working Group agreed to work together to “implement the agreement on hydrofluorocarbons (HFCs) reached by President Obama and President Xi at their meeting on 9 June 2013, in Sunnylands, California.”

12 July 2013, fourteen Pacific small island developing states (SIDS) called for action under the Montreal Protocol to phase down HFCs. In the Nadi Outcome Document of the Pacific SIDS Regional Preparatory Meeting for the Third International Conference on Small Island Developing States, these fourteen nations “agreed that the Montreal Protocol be utilized to undertake the gradual phasedown of production and consumption of HFCs called for in the Rio + 20 outcome document, The Future We Want.”

3 September 2013, the 33 State partners of the CCAC and the European Commission agreed to “work toward a phasedown in the production and consumption of HFCs under the Montreal Protocol.” The Coalition’s State partners also agreed to “adopt domestic approaches to encourage climate-friendly HFC alternative technologies,” and to “work with international standards organizations to revise their standards to include climate-friendly HFC alternatives.”
6 September 2013, on the margins of the G20 Summit in St. Petersburg, China’s President Xi Jinping and U.S. President Barack Obama agreed to open formal negotiations on the amendment to phase down HFCs under the Montreal Protocol:

“We reaffirm our announcement on June 8, 2013 that the United States and China agreed to work together and with other countries through multilateral approaches that include using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while continuing to include HFCs within the scope of the UNFCCC and its Kyoto Protocol provisions for accounting and reporting of emissions. We emphasize the importance of the Montreal Protocol, including as a next step through the establishment of an open-ended contact group to consider all relevant issues, including financial and technology support to Article 5 developing countries, cost effectiveness, safety of substitutes, environmental benefits, and an amendment. We reiterate our firm commitment to work together and with other countries to agree on a multilateral solution.”

6 September 2013, the leaders of the world’s twenty largest economies, as well as heads of State from six invited observer States, expressed their support in the St. Petersburg G20 Leaders’ Declaration for initiatives that are complementary to efforts under the UNFCCC, including using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while retaining HFCs within the scope of the UNFCCC and its Kyoto Protocol for accounting and reporting of emissions:

“We are committed to support the full implementation of the agreed outcomes under the United Nations Framework Convention on Climate Change (UNFCCC) and its ongoing negotiations. We also support complementary initiatives, through multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs), based on the examination of economically viable and technically feasible alternatives. We will continue to include HFCs within the scope of UNFCCC and its Kyoto Protocol for accounting and reporting of emissions.”

16 September 2013, Ministers representing BASIC countries agreed that HFCs should be dealt with through relevant multilateral fora guided by the principles and provisions of the UNFCCC:

“Ministers agreed that hydrofluorocarbons (HFC) should be dealt with through relevant multilateral fora, guided by the principles and provisions of the UNFCCC and its Kyoto Protocol. The availability of safe and technically and economically viable alternatives and the provision of additional financial resources by developed countries should also be taken into account.”

27 September 2013, Indian Prime Minister Manmohan Singh and U.S. President Barack Obama agreed to immediately convene discussions of phasing down HFCs under the Montreal Protocol, leaving accounting and reporting of emissions in the UNFCCC:

“The two leaders agreed to immediately convene the India-U.S. Task Force on hydrofluorocarbons (HFCs) to discuss, inter alia, multilateral approaches that include using the expertise of the institutions of the Montreal Protocol to phase down the consumption and production of HFCs, based on economically-viable and technically feasible alternatives, and include HFCs within the scope of the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol for accounting and reporting of emissions....”

The U.S.-India climate cooperation also will include a focus on improving the efficiency of air conditioning in India, which has the potential to avoid as many as 120 large power plants by 2030:

“Space Cooling Efficiency Collaboration: Demand for space cooling – primarily for air conditioners – constitutes a large portion of peak electricity demand in India. Air conditioners could add as much as 140 GW to peak load by 2030 and management of the peak contribution is critical for maintaining supply security and avoiding load shedding. The new U.S.-India Collaboration on Smart and Efficient Air Conditioning and Space Cooling is intended to advance policies and innovation to drive mass deployment and rapid uptake of high-efficiency cooling equipment and technologies to capture significant energy savings, potentially avoiding the need to build as many as 120 large power plants.”

See Section 4 for a further discussion of benefits of super-efficient room air conditioning.

21 to 25 October 2013, at the MOP 25, in Bangkok, countries continued to make progress on an international agreement to phase down HFCs under the Montreal Protocol. Significantly, the Africa Group, including South Africa, announced its support for “formal negotiations to enable the amendment process.” Jordan also demonstrated support for discussion of the amendment proposals, calling them “logical and well understood.” Delegates reconvened the formal Discussion Group on HFC Management, this time with a broader mandate that
included consideration of the high-level agreements to phase down HFCs made in preceding months. The formal Discussion Group met several times and proposed several ways forward for action on HFCs, including holding extra working meetings in 2014 to consider the amendment proposals. Brazil and China continued to engage constructively as well, and both played an important role in writing a detailed request to the TEAP to conduct additional research on HFCs and their alternatives. India, along with several other countries, expressed concern over whether technology was available and whether developed countries would be willing to pay for the transition in developing countries as required by the Montreal Protocol. These and other concerns will be addressed in 2014 as the amendment negotiations move forward.

19 November 2013, at the 21st E.U.-Japan summit in Tokyo, the E.U. and Japan emphasized the importance of the HFC phasedown under the Montreal Protocol:

“[T]hey underlined the contribution of international cooperative initiatives to the additional mitigation effort to narrow the existing gap between emission reduction pledges and what is needed according to science. In particular, they stressed the need for rapid progress on the phasedown of HFCs and for its close consideration as one of the issues to be addressed in the context of the Montreal Protocol.”

5 December 2013, U.S. and China reaffirmed the agreements on HFCs by Presidents Obama and President Xi Jinping from 8 June 2013 and 6 September 2013:

“Today, both countries reaffirmed the agreements reached by leaders regarding phasing down the production and consumption of the highly potent greenhouse gas hydrofluorocarbons (HFCs) using the expertise and institutions of the Montreal Protocol and to take next steps in the process, including the establishment of an open-ended contact group in the Montreal Protocol.”

2014

11 February 2014, following President Hollande’s State visit with President Obama, the White House emphasized that “France is also an important partner in the global effort to phase down production and consumption hydrofluorocarbons (HFCs) using the institutions and expertise of the Montreal Protocol.”

19 February 2014, at the conclusion of the North American Leaders’ Summit, Canada’s Primer Minister Stephen Harper, Mexico’s President Peña Nieto, and U.S. President Barack Obama agreed to “intensify our efforts to promote an amendment to the Montreal Protocol to phase down production and consumption of climate-damaging hydrofluorocarbons (HFCs).”

7 March 2014, U.S. Secretary of State John Kerry instructed Chiefs of Mission and all other State Department staff to make climate change a priority across all platforms, domestically and internationally, including efforts to enhance the Montreal Protocol, the Major Economies Forum, Clean Energy Ministerial, and the CCAC. as well as efforts to conclude a new climate agreement applicable to all countries by 2015 to take effect in 2020.

26 March 2014, the leaders of the E.U. and the U.S. issued a Joint Statement affirming their commitment to phasing down HFCs through the Montreal Protocol, and their commitment “to ambitious domestic action to limit HFC use and emissions.”

31 March 2014, the leaders of the E.U. and China issued a Joint Statement announcing that they “will cooperate on taking domestic action to avoid or reduce the consumption of HFCs and to work together to promote a global phase down of these substances.”

5 June 2014, the leaders of the G7 countries reaffirmed their commitment to phase down high-GWP HFCs under the Montreal Protocol:

“We will work together and with others to phase down the production and consumption of hydrofluorocarbons (HFC) under the Montreal Protocol. We will also continue to take action to promote the rapid deployment of climate-friendly and safe alternatives in motor vehicle air-conditioning and we will promote public procurement of climate-friendly HFC alternatives.”

10 July 2014, U.S. and China reaffirmed their commitment to phase down the production and consumption of HFCs.

14 to 18 July 2014, at the OEWG 34, the majority of countries expressed support for starting a formal contact group to negotiate the terms for the HFC phasedown. Some parties continued their opposition, including several Gulf States, so parties launched a discussion group to address issues raised by the reluctant parties. The same issues were addressed during a two-day HFC management seminar organized by the Montreal Protocol Secretariat on 11 to 12 July 2014; the seminar was attended by more than 400 country delegates; scientific, technical, and legal experts; and industry and environmental observers.
16 to 17 July 2014. at the Working Group meeting of the CCAC in Paris, France, the CCAC announced its plan to launch “a campaign with key countries and leading industries to reduce hydrofluorocarbons” at the UN Secretary-General’s Climate Summit in New York in September.237

23 September 2014, on the occasion of the UN Secretary-General’s Climate Summit, 33 state partners of the CCAC issued a Joint Statement supporting the phase down of the production and consumption of HFCs under the Montreal Protocol.238 The state partners were joined by numerous organizations and companies including: the CARB, the World Meteorological Organization, the Coca-Cola Company, Danfoss, and the member companies of Refrigerants, Naturally!.239

30 September 2014, India's Prime Minister Narendra Modi and U.S. President Barack Obama agreed on the need to take urgent action to reduce consumption and productions of HFCs under the Montreal Protocol.240

17 to 21 November 2014, at the MOP 26, in Paris, countries continued to make progress in their negotiations to phase down production and consumption of HFCs. In particular, China and India indicated their willingness to consider how to move forward to discuss the HFC phasedown. In addition to the regular OEWG meeting on 13 to 17 July 2015, the Parties agreed to hold an extra-ordinary three-day OEWG on 22 to 24 April, with a back-to-back two-day workshop on HFC management issues, with emphasis on the challenges of high ambient countries and on energy efficiency.241 The Parties also agreed to replenish the MLF with $507.5 million over the next three years.242

2015

25 January 2015, India's Prime Minister Narendra Modi and U.S. President Barack Obama agreed to make "concrete progress this year" to cut HFCs under the Montreal Protocol.243

6 March 2015, at the conclusion of the 15th Session of the African Ministerial Conference on the Environment in Cairo, Ministers and delegates from 54 countries of Africa urged all member States to use the Montreal Protocol to phase down the production and use of HFCs, and requested all to work towards a “contact group” to begin formal negotiations this year.244

In April 2015, Canada, Mexico, and U.S. submitted their newest proposal to phase down HFCs under the Montreal Protocol.245 The proposal would reduce cumulative HFC emissions between 2019 and 2050 by between 90 and 111.5 Gt CO\textsubscript{2}, “which is equal to roughly two years of emissions of all anthropogenic greenhouse gases at current emission levels.”246

17 April 2015, India submitted a proposal to phase down high-GWP HFCs under the Montreal Protocol.247 The proposal calls for the continued “use of HFCs and blends of HFCs as transitional substances for phase-out of HCFCs wherever low-GWP/zero-GWP alternatives are not available,” and a 15-year grace period before developing countries begin phasing down HFCs.248

20 April 2015, Senegal and Zimbabwe, on behalf of the 54 members of the Africa Group, submitted an informal proposal in the form of a Conference Room Paper requesting the establishment of a contact group at the OEWG 36 in July to “consider proposals to amend the Montreal Protocol, including those that have been submitted for consideration by the Meeting of the Parties.”249

24 April 2015, at the conclusion of the OEWG 35, the Parties agreed to hold additional inter-sessional meetings, “with a view to the establishment of a contact group” at the regularly scheduled OEWG in Paris in July.250 A two-day seminar on HFC management was presented by the Montreal Protocol Secretariat on 20 to 21 April 2015.251

30 April 2015, the E.U. submitted a proposal on behalf of its 28 member States.252

30 April 2015, the Federated States of Micronesia, the first country to submit a proposal in 2009, submitted a revised proposal, along with seven other Pacific Island States as co-sponsors—Kiribati, Marshall Islands, Mauritius, Palau, Philippines, Samoa, and Solomon Islands.253

8 June 2015, the leaders of the G7 countries pledged to “continue our efforts to phase down hydrofluorocarbons (HFCs) and call on all Parties to the Montreal Protocol to negotiate an amendment this year [2015] to phase down HFCs and on donors to assist developing countries in its implementation.”254

12 to 13 June 2015, a group of invited parties participated in an informal inter-sessional consultation in Vienna, Austria on the feasibility and ways of managing HFCs, where they discussed issues identified at the OEWG 35 in April. The outcome was a bracketed text that identified potential terms of reference for a formal contract group at the OEWG 36 on 20 to 24 July.255

29 June 2015, the E.U. and China agreed to “work together with other countries to agree on a multilateral solution to phase down the production and consumption of HFCs,” in addition to strengthening collaboration on domestic HFC policies and measures.
30 June 2015, Brazil’s President Dilma Rousseff and U.S. President Barack Obama “agreed to work multilaterally in the Montreal Protocol to consider promptly amendment proposals to phase down HFCs.”

21 July 2015, the Parties suspended the OEWG 36, rather than adjourning, to allow additional time to complete the terms of reference for a “contact group” that will then negotiate the details of the HFC amendment. The suspended OEWG 36 resumed on 29 to 30 October in the United Arab Emirates, which hosted the MOP 27 on 1 to 5 November.

22 October 2015, Pakistan’s Prime Minister and U.S. President Barack Obama “affirmed that their respective countries intend to work together to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons.”

29 to 30 October 2015, at the resumed OEWG 36, the Parties to the Montreal Protocol formed a formal contact group to analyze “feasibility and ways of managing HFCs including development of a common understanding on issues related to flexibility of implementation, 2nd and 3rd stage conversions, guidance to the ExCom, enabling activities for capacity building, and the need for an exemption for high ambient temperature countries.”

6 November 2015, at the MOP 27, the Parties to the Montreal Protocol agreed on the Dubai Pathway on Hydrofluorocarbons to “work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings.” The details of the amendment will be negotiated during a series of meetings in 2016, including two extraordinary OEWGs, the first from 4 to 8 April in Geneva, Switzerland and the second from 18 to 21 July in Vienna, Austria, and an extraordinary MOP from 22 to 23 July in Vienna, Austria. See text of the agreement in Appendix I.

2016

29 February 2016, during the sixth ministerial-level Pakistan-U.S. Strategic Dialogue, Secretary of State John Kerry and Pakistan’s Advisor to the Prime Minister on Foreign Affairs Sartaj Aziz, “reaffirmed their respective countries’ commitments to work together to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons.”

10 March 2016, the U.S. and Canada affirmed their commitments “to reduce use and emissions of hydrofluorocarbons (HFCs) using their respective domestic frameworks” and “to adopt a Montreal Protocol HFC phasedown amendment in 2016, and upon adoption to provide increased financial support to the Protocol’s Multilateral Fund.”

23 March 2016, Argentina’s President Mauricio Macri and U.S. President Barack Obama affirmed “their commitment to adopt an amendment to the Montreal Protocol on hydrofluorocarbons (HFCs) phase down in 2016, building on progress made and within the framework set out in the Dubai Pathway.”

31 March 2016, President Obama and China’s President Xi Jinping committed to work “bilaterally and with other countries to achieve successful outcomes this year in related multilateral fora, including on an HFC amendment under the Montreal Protocol pursuant to the Dubai Pathway.”

4 to 8 April 2016, at the OEWG 37, the Parties to the Montreal Protocol reached a tentative agreement on language for a four-year, potentially renewable exemption in three sectors for 34 countries with high-ambient temperatures. The Parties also reached tentative agreement on text to ensure that the MLF covers incremental costs for converting climate friendly alternatives and supports training of service technicians, based initially on a conference room paper submitted by the Africa Group. The Parties agreed to suspend the meeting and resume on 15-16 July in Vienna prior to the OEWG 38. They also agreed that the Secretariat would produce a consolidated text based on the four pending HFC amendments.

19 April 2016, at the conclusion of the 6th Special Session of African Ministerial Conference on the Environment in Cairo, Ministers and delegates from 54 countries of Africa renewed their mandate to continue negotiating an HFC Amendment “with a view of reaching an agreement on such amendment in 2016,” and to support Rwanda in hosting the MOP 28 in October. They also paid tribute to Dr. Mostafa Tolba for his significant role in the negotiation and adoption of the Vienna Convention and the Montreal Protocol as well as his role in establishing the first ever financial mechanism, the MLF, for the Implementation of the Montreal Protocol.

21 April 2016, at the conclusion of the United States-Gulf Cooperation Council Second Summit in Riyadh, convened at the invitation of King Salman ibn Abdulaziz of Saudi Arabia, President Obama and the heads of State of the Gulf Cooperation Council (the United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar, and Kuwait) “committed to work toward the adoption of an amendment to the Montreal Protocol in 2016 to phasedown hydrofluorocarbons.”

22
24 April 2016, at the conclusion of the 24th Meeting of the Leaders’ Representatives of the Major Economies Forum, representatives from 16 of the member countries expressed “broad support for – and confidence in the prospect of – finalizing an HFC amendment in 2016. Participants [also] acknowledged the important role an HFC phasedown would play in climate action, recognizing that the phasedown amendment would provide for various types of flexibility in implementation.”

13 May 2016, the leaders of the United States and the Nordic countries announced “additional support through the Protocol’s Multilateral Fund following adoption of an amendment for its implementation” and committed “to adopt a Montreal Protocol HFC phasedown amendment in 2016.”

16 May 2016, the G7 environment ministers welcomed “the Dubai decision to address HFCs under the Montreal Protocol, and support[ed] adoption of a Montreal Protocol HFC phase-down amendment in 2016.”

27 May 2016, the G7 Leaders welcomed “the decision in Dubai by the Montreal Protocol parties to work to address HFCs under the Montreal Protocol, and [support] adoption of an ambitious Montreal Protocol HFC phase-down amendment in 2016, and intend to provide additional support through the Multilateral Fund following adoption of an amendment for its implementation.” The G7 leaders also recognized “the importance of mitigating emissions of short-lived climate pollutants including black carbon, [HFCs], and methane to help slow the rate of near-term warming.”

2 June 2016, at the conclusion of the 7th Clean Energy Ministerial, energy ministers from 23 nations and the European Union announced actions to accelerate global development and deployment of “super-efficient, smart, climate friendly and affordable cooling technologies critical for prosperous and healthy societies furthering the goals of the Montreal Protocol.”

7 June 2016, India’s Prime Minister Narendra Modi and U.S. President Barack Obama “resolved to work to adopt an HFC amendment in 2016 with increased financial support from donor countries to the Multilateral Fund to help developing countries with implementation, and an ambitious phasedown schedule.”

29 June 2016, at the conclusion of the North American Leaders’ Summit, Canada’s Prime Minister Justin Trudeau, Mexico’s President Enrique Peña Nieto, and U.S. President Barack Obama launched a new North American Climate, Clean Energy, and Environment Partnership and affirmed their commitment to reducing the use of HFCs domestically and “to adopt an ambitious and comprehensive Montreal Protocol hydrofluorocarbons (HFCs) phase-down amendment in 2016.”

29 June 2016, at the conclusion of the Beijing G20 Energy Ministerial Meeting, the ministers recognized energy efficiency as a long-term priority for the G20 and adopted the new G20 Energy Efficiency Leading Programme (EELP). The Ministers also encouraged interested G20 and non-G20 countries “to participate actively in the additional key areas outlined in the EELP” such as the Super-efficient Equipment and Appliances Deployment initiative (SEAD).

12. Conclusion

Global HFC production and use is rising dramatically, and the associated HFC emissions could add up to 0.5°C of additional warming by the end of the century. Markets are already already avoiding high-GWP HFCs, in response to the signals from the scientists, customers, and from the policy community, including signals from the growing list of laws at the national and regional levels, which often include trade measures. Companies that produce climate-safe alternatives to HFCs are increasing their investment in alternatives and speeding their commercialization, and companies that are phasing out HCFCs are selecting climate-friendly alternatives rather than shifting into high-GWP HFCs. Just as the national bans, boycotts, and voluntary phaseouts of CFCs in the late 1970s and early 1980s paved the way for controls under the Montreal Protocol, similar actions occurring today are paving the way for the HFC amendment and creating the conditions for fast implementation. The agreement to finalize negotiations on an HFC amendment in 2016 will provide fast mitigation.
List of acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5 Parties</td>
<td>developing countries qualified for grace periods and MLF financing under the Montreal Protocol</td>
</tr>
<tr>
<td>AR5</td>
<td>Fifth Assessment Report of the IPCC</td>
</tr>
<tr>
<td>BASIC</td>
<td>Brazil, South Africa, India, and China</td>
</tr>
<tr>
<td>BAU</td>
<td>business-as-usual</td>
</tr>
<tr>
<td>BC</td>
<td>black carbon</td>
</tr>
<tr>
<td>CAFE</td>
<td>corporate average fuel economy</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CCAC</td>
<td>Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CGF</td>
<td>Consumer Goods Forum</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂-equivalent</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>E.U.</td>
<td>European Union</td>
</tr>
<tr>
<td>G7</td>
<td>Canada, France, Germany, Italy, Japan, United Kingdom, and United States</td>
</tr>
<tr>
<td>G8</td>
<td>Canada, France, Germany, Italy, Japan, Russia, United Kingdom, and United States</td>
</tr>
<tr>
<td>G20</td>
<td>An international forum for the governments and central bank governors from 20 major economies</td>
</tr>
<tr>
<td>Gt</td>
<td>gigatonne (billion tonnes)</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HCFC</td>
<td>hydrochlorofluorocarbon</td>
</tr>
<tr>
<td>HFC</td>
<td>hydrofluorocarbon</td>
</tr>
<tr>
<td>HFO</td>
<td>hydrofluoroolefin</td>
</tr>
<tr>
<td>IGSD</td>
<td>Institute for Governance & Sustainable Development</td>
</tr>
<tr>
<td>IISD</td>
<td>International Institute for Sustainable Development</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LCCP</td>
<td>life-cycle climate performance</td>
</tr>
<tr>
<td>MEA</td>
<td>Multilateral Environment Agreement</td>
</tr>
<tr>
<td>MLF</td>
<td>Multilateral Fund</td>
</tr>
<tr>
<td>MOP</td>
<td>Meeting of the Parties of the Montreal Protocol</td>
</tr>
<tr>
<td>NGO</td>
<td>nongovernmental organization</td>
</tr>
<tr>
<td>Non-A5 Parties</td>
<td>developed country Parties to the Montreal Protocol</td>
</tr>
<tr>
<td>ODP</td>
<td>ozone-depleting potential</td>
</tr>
<tr>
<td>OEWG</td>
<td>Open-ended Working Group of the Parties of the Montreal Protocol</td>
</tr>
<tr>
<td>ODS</td>
<td>ozone-depleting substance</td>
</tr>
<tr>
<td>PFC</td>
<td>perfluorocarbon</td>
</tr>
<tr>
<td>SF₆</td>
<td>sulfur hexafluoride</td>
</tr>
<tr>
<td>SEAD</td>
<td>Super-efficient Equipment and Appliance Deployment Initiative</td>
</tr>
<tr>
<td>SIDS</td>
<td>small island developing states</td>
</tr>
<tr>
<td>SLCPs</td>
<td>short-lived climate pollutants (black carbon, HFCs, methane, and tropospheric ozone)</td>
</tr>
<tr>
<td>SNAP</td>
<td>Significant New Alternatives Policy Program at U.S. EPA</td>
</tr>
<tr>
<td>TEAP</td>
<td>Technology and Economic Assessment Panel (of the UNEP Montreal Protocol)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>U.S. DOE</td>
<td>United States Department of Energy</td>
</tr>
</tbody>
</table>
Appendix I
Decision XXVII/1: The Dubai Pathway on Hydrofluorocarbons

Recognizing the Montreal Protocol’s history of success in achieving collaborative and consensus-based outcomes and that hydrofluorocarbons (HFCs) are replacements for ozone-depleting substances that parties to the Montreal Protocol are already successfully phasing out,

1. To work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the contact group on the feasibility and ways of managing HFCs during Montreal Protocol meetings;

2. To recognize the progress made at the Twenty-Seventh Meeting of the Parties on the challenges identified in the mandate of the contact group agreed at the resumed thirty-sixth meeting of the Open-ended Working Group (listed in annex I to the present decision,) on the feasibility and ways of managing HFCs, including development of a common understanding on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity-building and the need for an exemption for high-ambient-temperature countries, and to endorse the concepts listed in annex II to the present decision;

3. To recognize that further progress still needs to be made, in particular with respect to other challenges identified in the contact group mandate, for example conversion costs, technology transfer and intellectual property rights;

4. To hold in 2016 a series of Open-ended Working Group meetings and other meetings, including an extraordinary meeting of the parties;

5. To continue consideration at the meetings mentioned in paragraph 4 above of items 6 and 7 of the agenda for the Twenty-Seventh Meeting of the Parties (UNEP/OzL.Pro.27/1), including the submissions set out in documents UNEP/OzL.Pro.27/5, UNEP/OzL.Pro.27/6, UNEP/OzL.Pro.27/7 and UNEP/OzL.Pro.27/8;

Annex I to decision XXVII/1

Mandate for a possible contact group on the feasibility and ways of managing HFCs

The Open-ended Working Group of the Parties to the Montreal Protocol at its thirty-fifth meeting held in Bangkok from 22 to 24 April 2015, agreed that “it would continue to work inter-sessionally in an informal manner to study the feasibility and ways of managing HFCs, including, inter alia, the related challenges set out in annex II to the [report of the thirty-fifth meeting of the Open-ended Working Group], with a view to the establishment of a contact group on the feasibility and ways of managing HFCs at the thirty-sixth meeting of the Open-ended Working Group” (UNEP/OzL.Pro.WG.1/35/6, para. 128).

The informal meeting was convened on the 12 13 of June in Vienna on the above mentioned basis.

The parties have recognised in their interventions the success of the Montreal Protocol and its institutions in phasing out ODSs.

The management of HFCs is applicable to both A5 and non-A5 parties.

Parties agree that nothing should be considered agreed until everything is agreed.

Parties agree that they shall first resolve the challenges mentioned below by generating solutions in a contact group.

- Relevance and recognition of the special situation of developing countries and the principles under the Montreal Protocol which have enabled sufficient additional time in the implementation of commitments by A5 countries,
- Maintain the MLF as the financial mechanism, and to agree that additional financial resources will be provided by non-A5 parties to offset costs arising out of HFC management for A5 parties if obligations are agreed to. In this regard, key elements for financial support from the MLF for A5 parties will be developed by the contact group to provide guidance to the ExCom of the MLF, taking into account the concerns of parties,
- The elements in paragraph 1(a) of decision XXVI/9 including IPR issues in considering the feasibility and the ways of managing HFCs,
- Flexibility in implementation that enables countries to set their own strategies and set their own priorities in sectors and technologies,
- Exemption process and a mechanism for periodic review of alternatives including the consideration of availability or lack of availability of alternatives in all sectors in A5 countries and special needs for high ambient countries, based on all the elements listed in paragraph 1(a) of decision XXVI/9,
- Relationship with the HCFC phase out,
- Non-party trade provisions, and
• Legal aspects, synergies and other issues related to the UNFCCC in the context of HFC management under the MP.

Then, the parties will discuss in the contact group the ways of managing HFCs including the amendment proposals submitted by the parties.

Annex II of the report of the 35th Open-ended Working Group meeting

Challenges to be addressed

• Energy efficiency
• Funding requirements
• Safety of substitutes
• Availability of technologies
• Performance and challenges in high ambient temperatures
• Second and third conversions
• Capacity-building
• Non-party trade provisions
• Synergies with the United Nations Framework Convention on Climate Change (legal, financial aspects)
• Relationship with the HCFC phase-out
• Ecological effects (effects on fauna and flora)
• Implications for human health
• Social implications
• National policy implications
• Challenges to the production sector
• Rates of penetration of new alternatives
• Exemptions and ways to address lack of alternatives
• Technology transfer
• Flexibility in implementation
Appendix II

Background on IGSD’s fast-action campaign to reduce HFCs and other short-lived climate pollutants

Phasing down HFCs under the Montreal Protocol is the central focus of IGSD’s fast-action climate mitigation campaign, which promotes using existing laws and institutions to achieve immediate climate mitigation and complement efforts under the UNFCCC. IGSD’s strategy was presented in a 2009 article written by Nobel Laureate Mario Molina, Durwood Zaelke, K. Madhava Sarma, Stephen O. Andersen, Veerabhadran Ramanathan & Donald Kaniaru, Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO₂ emissions. The paper was written for the Proceedings of the National Academy of Sciences of the U.S. as the policy piece in a PNAS Special Feature on climate tipping points edited by John Schellnhuber.

The article defines fast-action strategies as those that can be started in two to three years, substantially implemented in five years in developed countries and ten years in developing countries, and can produce a response in the climate system on a timescale of decades, to complement cuts in CO₂, which operate on a longer timescale. Broad implementation of these strategies can cut the rate of global warming in half and the rate of Arctic warming by two-thirds over the next several decades.

The HFC component of this approach was updated in a November 2012 policy paper, Strengthening Ambition for Climate Mitigation: The Role of the Montreal Protocol in Reducing Short-lived Climate Pollutants, by Durwood Zaelke, Stephen O. Andersen, & Nathan Borgford-Parnell in RECIEL, and the science component presented in a June 2013 science paper, The role of HFCs in mitigating 21st century climate change, by Yangyang Xu, Durwood Zaelke, Guus J. M. Velders, and Veerabhadran Ramanathan (26 June 2013). The paper calculates that mitigating SLCPs can avoid 1.5°C of warming by end-of-century, comparable to the 1.1°C of warming that can be avoided by aggressive CO₂ mitigation by end-of-century. The paper calculates that by 2050 SLCP mitigation can avoid six times more warming than aggressive CO₂ mitigation (0.6°C from SLCP mitigation, compared to 0.1°C from CO₂ mitigation). Up to one-third of the total of 1.5°C in avoided warming from SLCP mitigation, or 0.5°C, will come from cutting HFCs.

Related research led by Ramanathan published April 2013 in Nature Climate Change calculates that cutting SLCPs can reduce the rate of sea-level rise quickly by about 25%, and when coupled with aggressive CO₂ mitigation, can double this. Individual contributions to avoided sea-level rise by 2100 from different mitigation actions are: 29% from CO₂ measures and 71% from SLCP measures (13% from HFC measures, 17% from black carbon measures, and 41% from methane measures). Aixue Hu, Yangyang Xu, Claudia Tebaldi, Warren M. Washington & Veerabhadran Ramanathan (2013) Mitigation of short-lived climate pollutants slows sea-level rise, Nature Climate Change 3:730-734.

IGSD promotes the importance of reducing HFCs and other SLCP through scientific and policy publications, several of which are listed below. IGSD also promotes the importance of SLCP mitigation in various policy venues, as well as through the media. Op-Eds by IGSD, and others, are listed below, along with a list of Editorials in Nature, The Economist, The New York Times, The Washington Post, and Bloomberg.

IGSD Publications on HFCs and the Montreal Protocol

3. Nathan Borgford-Parnell, Maxime Beaugrand, Durwood Zaelke, & Stephen O. Andersen (October 2015) Phasing down the use of hydrofluorocarbons (HFCs), in Seizing the Global Opportunity, a report from the New Climate Economy.

7. Stephen O. Andersen & Nancy J. Sherman (2015) *The importance of finding the path forward to climate-safe refrigeration and air conditioning; thinking outside the box and without limits*, J. ENVIRON. STUD. SCI.

10. Suely Carvalho, Stephen O. Andersen, Duncan Brack, & Nancy J. Sherman (2014) *Alternatives to High-GWP Hydrofluorocarbons*, IGSD WORKING PAPER.

22. Romina Picolotti (December 2011) *An equitable arrangement*, UNEP OUR PLANET: POWERING CLIMATE SOLUTIONS.

complement cuts in CO\textsubscript{2} emissions, Proceedings of the National Academy of Sciences. USA. 106(49):20616-20621.

29. K. Madhava Sarma & Durwood Zaelke (27 June 2008), Start, then Strengthen: The Importance of Immediate Action for Climate Mitigation, IISD’s MEA Bulletin.

Select Editorials and Op-Eds on HFCs and the Montreal Protocol

Editorials:

1. The Financial Times, “We have saved the planet once, now let’s do it again” (3 July 2016)
8. The Economic Times, Editorial, “Lima Summit: India should commit to boost energy efficiency” (10 Dec 2014)
20. The Economist, Editorial, “Piecemeal possibilities” (17 Feb 2011)
22. The Economist, Editorial, “Unpacking the problem” (3 Dec 2009)
Op-Eds:

2. *The Huffington Post*, Op-Ed, Durwood Zaelke, “G7 Leaders Commit to Cut Near-Term Warming by Reducing HFCs, Other Super Pollutants” (1 June 2016)
25. Las Vegas Sun, Op-Ed, L. Thomas, “Follow Reagan’s lead and take action on climate change” (11 Dec 2013)
29. Washington Post, Op-Ed, J. Yong Kim, “U.S. takes key climate change steps, but the world must do more” (27 June 2013)
34. The Hill, Op-Ed, D. Zaelke & A. Light, “Rio meeting can still produce a key climate outcome” (20 June 2012)
38. The Guardian, Op-Ed, A. Steiner, “CO₂ is not the only cause of climate change” (11 Sept 2009)
Endnotes

1 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“Recognize that further progress still needs to be made in particular with respect to other challenges identified in the contact group mandate, for example conversion costs, technology transfer and intellectual property rights.”); see also UNEP (2016) Report of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.27/13, 25 (“1.78. The Meeting of the Parties decides: * * * 1. To work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the context group on the feasibility and ways of managing HFCs during Montreal Protocol meetings;”); and UNEP News Centre (2015) Montreal Protocol Parties Devise Way Forward to Protect Climate Ahead of Paris COP21 (“The parties agreed to work together, within the Montreal Protocol, towards an HFC amendment in 2016 by first resolving challenges and solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings. This outcome was agreed after extensive negotiations during the 27th Meeting of the Parties (MOP27) to the Protocol, hosted by the Government of the United Arab Emirates in Dubai from 1 to 5 November.”).

2 United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement, FCCC/CP/2015/L.9 (“Emphasizing with serious concern the urgent need to address the significant gap between the aggregate effect of Parties’ mitigation pledges in terms of global annual emissions of greenhouse gases by 2020 and aggregate emission pathways consistent with holding the increase in the global average temperature to well below 2 °C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C.”).

3 United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement, FCCC/CP/2015/L.9 (“In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas emissions as soon as possible, recognizing that peaking will take longer for developing country Parties, and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century, on the basis of equity, and in the context of sustainable development and efforts to eradicate poverty.”).

4 United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement, FCCC/CP/2015/L.9 (“106. Resolves to ensure the highest possible mitigation efforts in the pre-2020 period, including by: * * * (b) Urging all Parties that have not already done so to make and implement a mitigation pledge under the Cancun Agreements; (c) Reiterating its resolve, as set out in decision 1/CP.19, paragraphs 3 and 4, to accelerate the full implementation of the decisions constituting the agreed outcome pursuant to decision 1/CP.13 and enhance ambition in the pre-2020 period in order to ensure the highest possible mitigation efforts under the Convention by all Parties.”).

5 HFCs belong to a family of factory-made gases including chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), used for air conditioning, refrigeration, foam insulation, and other specialized sectors. In 1975, atmospheric chemists Molina and Rowland identified the potent stratospheric ozone depleting effects of CFCs. See Molina M., & Rowland F. S. (1974) Stratospheric sink for Chlorofluoromethanes: Chlorine Atom-Catalyzed Destruction of Ozone, Nature 249(5460):810-812. This was followed, within a year, by the discovery of the potent greenhouse gas effect of the halocarbons CFC-11 and CFC-12. See Ramanathan V. (1975) Greenhouse effect due to chlorofluorocarbons: climatic implications, Sci. 190(4209):50-52.

7 Velders G. J. M, et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4564, 4568 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146 GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050.”). The totals range from 130 to 210 GtCO2-eq. by 2050.

9 UNEP (1987) The Montreal Protocol on Substances that Deplete the Ozone Layer Article 5: Special Situation of Developing Countries. Under the original Montreal Protocol, developing countries consuming less than 0.3/kg CFC per capita qualified under Article 5(1) for a grace period prior to controls. Subsequently, the Montreal Protocol was modified to provide financing for the so-called Article 5 Parties, and the list of Parties qualifying under Article 5 was adjusted to reflect the special circumstances of various Parties. 147 Parties currently qualify under Article 5, see UNEP (2014) List of Parties categorized as operating under Article 5 paragraph 1 of the Montreal Protocol (considered as developing countries).

10 Speech, Shende R. 2009 U.S.EPA’s Stratospheric Ozone Protection and Climate Protection Awards (21 April 2009) (“Humanity has already benefited by about 60% improvement in energy efficiency in domestic refrigerators since the industry started looking at their design in order to change from CFC-12.”); and U.S. E.P.A. (2002) Building Owners Save Money, Save the Earth: Replace Your CFC Air-Conditioning Chiller, 6-7 (“The most energy-efficient new chillers will reduce electric generation and associated greenhouse gas emissions by up to 50% or more compared to the CFC chillers they replace.”).

11 Shah N., Wei M., Letschert V., & Phadke A., (2015) Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Air Conditioning, Ernest Orlando Lawrence Berkeley National Laboratory, ES-9 (“While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion
12 Note that there will be some limited overlap between the modeled emissions reductions from a phasedown and those from improvements in mechanical efficiency of equipment. Shah N., Wei M., Letschetz V., & Phadke A., (2015) **Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Air Conditioning**, Ernest Orlando Lawrence Berkeley National Laboratory, ES-10 (“[R]esults for the policies enacted in parallel are lower than simple addition of the results for the policies in isolation simply because the results are multiplicative and not additive. i.e. the results from efficiency improvement are multiplied to the results from refrigerant transition. For example an efficiency improvement of 30% along with a 5% improvement in efficiency from refrigerant transition will result in a 33.5% reduction in energy consumption…”).

13 Solomon S., et al. (2016) **Emergence of Healing in the Antarctic Ozone Layer**, Science, Early publication, 1–12, 3-4 (“The ozone hole typically begins to open in August each year and reaches its maximum areal extent in October. Decreases in the areal extent of the October hole are expected to occur in the 21st century as chemical destruction slows, but cannot yet be observed against interannual variability, in part because of the extremely large hole in 2015… But monthly averaged observations in September display shrinkage of 4.5 ± 4.1 million km2 over 2000–2015… The model underestimated the observed September hole size by about 15% on average, but yields similar variability…and trends (4.9 ± 4.7 million km2). [T]he observed and modeled day of year when the ozone hole exceeds a threshold value of 12 million km2 is occurring later in recent years, indicating that early September holes are becoming smaller…. This result is robust to the specific choice of threshold value, and implies that the hole is opening more slowly as the ozone layer heals.”).

14 The Montreal Protocol’s Technology and Economic Assessment Panel (TEAP) uses the term “low-GWP” to refer to refrigerants with GWP* of 300 or lower while “moderate-GWP” refers to refrigerants with GWP* of 1,000 or lower. Replacing single-chloro fluorocarbons (CFCs) or long-lived hydrofluorocarbons (HFCs) with refrigerants classified as low-GWP can yield large savings in terms of global warming potential (GWP*). The potential savings depend on the cost of developing and implementing these alternatives as well as the impact of efficiency improvements. The annual savings have been estimated to be around 10% of the potential GWP savings. For instance, the potential GWP* savings over 20 years of a single-chloro fluorocarbon (CFC) being replaced by a low-GWP refrigerant is estimated to be 5%. The annual savings per person is approximately $0.30, which is comparable to the cost of a $0.03/t CO2 reduction.

16 A. Fortems-Chiney et al (2015) **Increase in HFC-134a emissions in response to the success of the Montreal Protocol**, J. of Geophysical Res.: Atmos., 120: 11,728–11,742, 11,734 (“Posterior emissions range from 18 ± 2 Gg/yr in 1995 to 167 ± 5 Gg/yr in 2010… These estimates are in excellent agreement with the posterior emissions of Xiang et al. [2014], ranging from 20 Gg in 1995 to 153 Gg in 2010 who used the same NOAA and AGAGE networks and additional observational data (i.e., the aircraft campaigns Hiaper-Pole-to-Pole of Carbon Cycle and Greenhouse Gases Study HIPPO over the Pacific Ocean) to derive global emissions for these years…[T]his is also consistent with the posterior emissions of Montzka et al. [2014] and Rigby et al. [2014], ranging, respectively, from 22 Gg in 1995 to 168 and 167 Gg in 2010.”).

17 NASA (2015) **Factsheet: Ozone Depletion by Hydrofluorocarbons**, 1 (“Ozone depletion potentials (ODPs) for HFCs range from 0.39x10$^{-3}$ to 30.0x10$^{-3}$, approximately, 100 times larger than previous ODP estimates that were based solely on chemical effects. Per unit mass, CFC-11 causes about 400 times more ozone depletion than the HFCs, while HCFC-22 causes 8 times more ozone depletion… Reducing HFC emissions, and thus their radiative forcing, would reduce the HFC impacts on the stratosphere, lessening the temperature and circulation responses and the resulting ozone depletion. Hence, emerging HFC species that have low atmospheric concentrations, short lifetimes, and are weak radiative forcing agents would have proportionately smaller impacts on stratospheric climate and ozone.”); and Hurwitz M. M., Fleming E. L., Newman P. A., Li F., Mlawer E., Cady-Pereira K., & Bailey R. (2015) **Ozone Depletion by Hydrofluorocarbons**, Geophys. Res. Lett. 42(20):8686-8692.

18 Hurwitz M. M., Fleming E. L., Newman P. A., Li F., Mlawer E., Cady-Pereira K., & Bailey R. (2015) **Ozone depletion by hydrofluorocarbons**, Geophys. Res. Lett. 42(20):8686-8692 (“In the past three decades, CFCs, HCFCs, halons and other ozone-depleting substances (ODSs) caused large stratospheric ozone losses, most prominently in the Antarctic (i.e., the so-called “ozone hole”). These compounds contain chlorine (Cl) and/or bromine (Br), and when broken down in the stratosphere, the Cl and Br atoms deplete ozone via catalytic loss cycles…. Note that, because of differences in their IR absorption spectra, the structure of the heating response to HFCs closely resembles that of the CFCs (i.e., with maximum heating ~18 km altitude) but is different than that of CO$_2$: (with tropospheric warming and stratospheric cooling)… HFC emissions lead to a net stratospheric ozone loss. Figure 1 (thick black line, lower panel) shows that the total column ozone response to HFCs is approximately -0.035% (-0.10 DU) in 2050. The ozone response to HFCs results from temperature and circulation changes; sensitivity simulations show that 35% of the global mean total ozone change is driven by temperature changes (i.e., temperature impacts on gas-phase and heterogeneous reactions) while the remainder is driven by circulation changes.”).

19 For example, HFC-143a has a maximum ODP of 0.0056, compared to HCFC-151, which has a maximum ODP of 0.005. See Hurwitz M. M., Fleming E. L., Newman P. A., Li F., Mlawer E., Cady-Pereira K., & Bailey R. (2015) **Ozone Depletion by Hydrofluorocarbons**, Geophys. Res. Lett. 42(20):8686-8692, Table 1; and UNEP OzoneAction (2016) **HCFC Controlled Under the Montreal Protocol**.

demand for these compounds [HFCs] is based on GDP and population (8, 12). However, the new scenarios incorporate more recent information such as (i) rapid observed growth in demand, substantiated by atmospheric observations, for products and equipment using HCFCs and HFCs in developing countries (see SI Text); (ii) reported increases in consumption of HCFCs in developing countries; (iii) replacement patterns of HCFCs by HFCs as reported in developed countries; (iv) accelerated phaseout schedules of HCFCs in developed and developing countries, and; (v) increases in reported use of HFC-134a in mobile AC in developed and developing countries.”; and Phadke A., Adhyankar N., & Shah N., *Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges*, Lawrence Berkeley National Laboratory at 9 (“The example of China is illuminating for understanding the rapid growth in household appliance ownership as a result of rising incomes and urbanization. The saturation of air conditioners in urban China went from nearly zero in 1992 to about 100% by 2007 i.e. within a span of 15 years [3]…. [We] believe that the AC ownership in India may witness similar growth.”).

22 According to the World Resources Institute *Climate Analysis Indicators Tool* (CAIT), CO2-eq emissions of fluorinated gases (f-gases), which include HCFCs, HFCs, SF6, and PFCs, in China increased by 111% between 2000 and 2005 (and 2.775% between 1990 and 2010), compared to a 68% increase in CO2, 8% increase in methane, and 6% increase in N2O. HFC and HFC emissions increased by 78% in India over the same period, compared to 19% for CO2, 10% for methane, and 6% for N2O. HFC and HFC emissions in the U.S. increased by 30% between 2000 and 2005 compared to 1.5% for CO2, and a 5% decrease in methane and N2O. According to the U.S. EPA (2014), Table ES-2, U.S. HFC emissions from the substitution of ozone depleting substances grew by nearly 41% between 2005 and 2012, and HFCs are the only greenhouse gases that saw total emissions increase between 2011 and 2012. EU CO2-eq emissions of HFCs increased by 298% between 1990 and 2012, and are the only greenhouse gases, measured by CO2-eq emissions, that have increased every year over that period. According to the Australian Government’s 2011 submission to the UNFCCC, HFC emissions in Australia increased by 578.5% between 1990 and 2011; the only other two greenhouse gas emissions to increase over that period were CO2 and N2O, which increased 46.3% and 36.1% respectively. Australian Government (2013) *Australia’s Sixth National Communication on Climate Change: A Report under the United Nations Framework Convention on Climate Change; see also* European Environment Agency (2014) *Annual European Union greenhouse gas inventory 1990–2012 and inventory report 2014*, No 9/2014; and Fang X., et al. (2016) *Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050*, ENVIRO. SCI. TECHNOL., Just Accepted Manuscript, DOI: 10.1021/acs.est.5b04376

24 Montzka, S. A., et al. (2014) *Recent Trends in Global Emissions of Hydrochlorofluorocarbons and Hydrofluorocarbons—Reflecting on the 2007 Adjustment to the Montreal Protocol*, J. PHYS. CHEM. (ASAP) 119(19):4439, 4439 (“HFC global emission magnitudes related to this substitution totaled 0.51 (0.03, 0.04) GtCO2-eq/yr in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.”); and Fang X., et al. (2016) *Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050*, ENVIRO. SCI. TECHNOL., Just Accepted Manuscript, DOI: 10.1021/acs.est.5b04376 (“A comparison between the HFC emissions for non-Annex I countries (mainly developing countries) for 2010–2012 with those from China estimated in this study shows that China’s HFC CO2-eq emissions account for ~35% of total emissions in non-Annex I countries in 2010–2012. In other words, significant HFC emissions are indeed coming from developing countries other than China. By comparing estimates for the two periods 2007–2009 and 2010–2012, we find that HFC CO2-eq emissions from other developing countries have increased by ~30%. The uncertainty in our estimated emissions from China could indeed be equivalent to those from other nations with smaller emissions.”).

25 A. Fortems-Chiney et al (2015) *Increase in HFC-134a emissions in response to the success of the Montreal Protocol*, J. OF GEOPHYSICAL RES.: ATMOS., 120: 11,728–11,742, 11,735 (“The posterior inventory highlights the U.S. as the main HFC-134a source, contributing at least 45% of the global emissions since 1995. Our posterior U.S. emissions are higher than most of the previous studies for the years 2005–2007…. In 2005, we infer emissions 62% higher (57 ± 9 Gg/yr, starting from a prior of 68 ± 24 Gg/yr) than the 35 Gg/yr of Stohl et al [2009] (starting from a prior of 57 Gg/yr). Our posterior U.S. estimates are also more than 2 times larger than the HFC-134a emissions estimated from aircraft measurement campaigns in 2004 and 2006 by Millet et al. [2009] and higher than the estimates of 43 Gg/yr (22–60) of Manning and Weiss [2007] for year 2006 and of 43 ± 6 Gg/yr of Barletta et al. [2011] for 2008. The more comprehensive suite of data used here compared to these studies (e.g., measurements only from the THD stations for Manning and Weiss [2007]) may explain such differences.”).

26 A. Fortems-Chiney et al (2015) *Increase in HFC-134a emissions in response to the success of the Montreal Protocol*, J. OF GEOPHYSICAL RES.: ATMOS., 120: 11,728–11,742, 11,740 (“U.S. emissions, and to a lesser extent European emissions, appear to have drastically increased since 1995 (from 10 to 71 Gg/yr in 2010 and from 4 to 37 Gg/yr in 2010, respectively). Driven by these enhancements, the global HFC-134a emissions have reached the unprecedented level of 167 ± 5 Gg/yr in 2010. However, the regional growth rates have slowed down since 1995 over developed countries, with a rate of +5%/yr for the U.S., +4%/yr for
Europe, and near zero for Japan over 2005–2010. On the contrary, the Chinese emissions, although currently lower than U.S. and European emissions, appear to grow at a rate of +20%/yr since 2005. Due to the growing demand for vehicles in Asia (269 vehicles per thousand people in 2030 [Davis et al., 2012; WARD, 2010]), the HFC-134a emissions could potentially continue to rise significantly in the near future [Velders et al., 2009; Su et al., 2015], unless this species is phased out by international agreements (e.g., Directive 2006/40/EC of the European Union or North American HFC phase-down amendment proposal [EPA, 2014]).

27 Velders G. J. M., et al. (2012) Preserving Montreal Protocol Climate Benefits by Limiting HFCs, Sci. 335:922, 922 (“The current contribution to climate forcing of HFCs used as ODS substitutes is about 0.012 W/m2 . . . In an upper-range scenario, global radiative forcing from HFCs increases from about 0.012 W/m2 in 2010 to 0.25 to 0.40 W/m2 in 2050.”). See also A. Fortems-Cheney et al (2015) Increase in HFC-134a emissions in response to the success of the Montreal Protocol, J. OF GEOPHYSICAL RES.: ATMOS., 120: 11,728–11,742, 11,728 (“While posing no threat to stratospheric ozone, HFC-134a is nevertheless of concern because of its long life-time, combined with a relatively high global warming potential (GWP) of 1500 over the 100 year horizon [Forster et al., 2007; Harris et al., 2014]. Indeed, the HFC-134a contribution to atmospheric radiative forcing has grown from negligible in 1995 to 12 ± 0.2 mW/m2 in recent years [Rigby et al., 2014] following the sharp emission rise over this period. Within current scenarios of continued HFC emission growth, its contribution to the radiative forcing of the climate system could be equivalent to 9–19% of carbon dioxide emissions by the year 2050 [Velders et al., 2009; Daniel et al., 2011]).

28 Xu Y., Zaelke D., Velders G. J. M., & Ramanathan V. (2013) The role of HFCs in mitigating 21st century climate change, ATMOS. CHEM. PHYS. 13:6083-6089; see also Hare B. et al. (2012) CLOSING THE 2020 EMISSIONS GAP: ISSUES, OPTIONS AND STRATEGIES; and Ramanathan V. & Xu Y. (2010) The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues. PROC. NAT’L. ACADEM. SCI. U.S.A. 107(18):8055-8062 (The Ramanathan & Xu study was the first to model the climate benefit of HFC mitigation in combination with SLCPs, CO2, and other long-lived greenhouse gases.).

29 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, ATMOS. CHEM. PHYS. DISCUSS. 14:4546, 4568 (“The annual HFC emissions in our scenarios reach up to 12% of the upper-range annual CO2 emissions (RCP8.5) in 2050 and 75% for the CO2 scenario with strong mitigation (RCP3PD); see also UNEP (2011) HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT; and Montzka S. A. (2012) HFCs in the Atmosphere: Concentrations, Emissions, Impacts, ASHRAE. Some countries will likely see larger growth in annual emissions. For example, China’s HFC emissions are projected to be equivalent to more than 15% of annual CO2 emissions under a BAU scenario in 2050. Fang X., et al. (2016) Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050, ENVIRON. SCI. TECHNOL., Just Accepted Manuscript, DOI: 10.1021/acs.est.5b04376 (“Under the HFC BAU Scenario, the proportions of China’s HFC CO2-eq emissions to China’s CO2 emissions (Figure S3a) were estimated to increase from less than 1% in 2010 to more than 15% in 2050, revealing the possible significance of future China’s HFC emissions to China’s total GHG emissions.”).

30 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, ATMOS. CHEM. PHYS. DISCUSS. 14:4546, 4568 (“In these scenarios, the HFC bank grows to 39–64 GtCO2-eq compared with an annual CO2 emission of 12–74 GtCO2-eq yr−1 in 2050 (Table 2). So, the estimated HFC bank sizes range from a factor of less than 1 to more than 5 year’s worth of CO2-emissions in 2050 for the scenarios compared here.”).

31 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, ATMOS. CHEM. PHYS. DISCUSS. 14:4546, 4568 (“In these scenarios, the HFC bank grows to 39–64 GtCO2-eq compared with an annual CO2 emission of 12–74 GtCO2-eq yr−1 in 2050 (Table 2). So, the estimated HFC bank sizes range from a factor of less than 1 to more than 5 year’s worth of CO2-emissions in 2050 for the scenarios compared here.”).

34 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, ATMOS. CHEM. PHYS. DISCUSS. 14:4546-4572 (“If, for example, the HFC production were to be phased out in 2020 instead of 2050, the cumulative emissions avoided would be about 91–146 GtCO2-eq from 2020 to 2050, while a bank of about 39–64 GtCO2-eq is also avoided at 2050, an additional benefit to climate protection of about 40 % compared with the cumulative emissions reduction alone.”).
36 Davis S. J. & Socolow R. H. (2014) *Commitment Accounting of CO₂ Emissions*, Envtl. Res. Letrs. 9, 1–9, 4 (“The point of view is from 2012, a 40-year lifetime is assumed for all generators, and all fossil-fuel-fired electricity-generating units (‘generators’) that were built globally between 1950 and 2012 are included. Global committed emissions from these generators total 629 (508–761) Gt CO₂ (light green area; only the central estimate reflecting a 40-year lifetime is shown), of which 322 Gt CO₂ were realized emissions by 2012 (black area), and 307 (192–439) Gt CO₂ were remaining commitments as of 2012 (dark green area). The error estimates in parentheses here are for assumed lifetimes of 30 and 50 years, presented in table 1 (along with the results of assuming lifetimes of 20 and 60 years). Thus, the range of estimated remaining commitments in 2012 (192–439 Gt CO₂) assigns an uncertainty of 40% to our central estimate of 307 Gt CO₂.”).

37 United Nations Framework Convention on Climate Change (2015) *Adoption of the Paris Agreement*, FCCC/CP/2015/L.9, (“Emphasizing with serious concern the urgent need to address the significant gap between the aggregate effect of Parties’ mitigation pledges in terms of global annual emissions of greenhouse gases by 2020 and aggregate emission pathways consistent with holding the increase in the global average temperature to well below 2 °C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C.”).

40 Xu Y., Zaelke D., Velders G. J. M., & Ramanathan V. (2013) *The role of HFCs in mitigating 21st century climate change*, Atmos. Chem. Phys. 13:6083, 6087 (“Given the limited knowledge regarding climate sensitivity (0.5 to 1.2°C/ (W/m²)), the absolute value of projected temperature at the end of 21st century is also uncertain (vertical bars in Fig. 3), but the relative contribution of HFC to reducing the warming is still significant and less subject to such uncertainty.”).

44 De Larminat P. (2013) *Development of Climate Friendly Alternatives for Chillers* (presentation at Bangkok Technology Conference, 29 June 2013) (“In practice, the share of indirect emissions is around 90/95% of total emissions. Can range from 70% to more than 98% depending on the application.”).

45 Speech, Shende R., 2009 *U.S. EPA’s Stratospheric Ozone Protection and Climate Protection Awards* (21 April 2009) (“Humanity has already benefited by about 60% improvement in energy efficiency in domestic refrigerators since the industry started looking at their design in order to change from CFC-12.”); and U.S. E.P.A. (2002) *Building Owners Save Money, Save the Earth: Replace your CFC Air-Conditioning Chiller*, 6-7 (“The most energy-efficient new chillers will reduce electric generation and associated greenhouse gas emissions by up to 50% or more compared to the CFC chillers they replace.”).

46 U.S. EPA (2002) *Building Owners Save Money, Save the Earth Replace Your CFC Air Conditioning Chiller*, 2 (“Building owners around the world have saved millions of dollars in electricity bills by upgrading air conditioning chiller installations and through concurrent investments to reduce building cooling load. Today’s chillers use about one-third or less electricity compared to those produced just two decades ago. Building owners can typically pay back the investment cost of replacing an old CFC chiller in five years or less in virtually all locations that cool for more than three months a year.”); and Todesco G. (2005) *Chillers + Lighting + TES: Why CFC Chiller Replacement Can Be Energy-Savings Winfall*, ASHRAE JOURNAL 47(3):18, 18 (“These CFC chillers serve an estimated 3.4 billion to 4.7 billion ft² (315 million to 440 million m²) of commercial floor space with a total electricity consumption of 49,000 to 66,000 GWh/year, and an annual electricity operating cost of $3.4 billion to $4.8 billion. In addition, the cooling and lighting loads in these buildings contribute an estimated...”)
3,600 to 9,200 MW to the summer peak demand of North American utilities. The electricity consumption and peak electrical demand can be reduced significantly by replacing the remaining CFC chillers with new efficient plants. The performance of chillers has improved significantly in the last 12 years compared to chillers manufactured in the 1970s and 1980s.”).

47 Press Release, York International. Taking the bite out of CFC replacement by improving air conditioning efficiency (14 February 1996) (“Now that production of chlorofluorocarbons (CFCs) has ended, the majority of commercial and institutional building owners and industrial plant managers have a chance to turn adversity into opportunity. That's the premise of a white paper being offered by York International Corp., a major manufacturer of chillers -- the large refrigeration machines at the heart of most large-building air-conditioning systems. While there's no escaping eventual replacement or conversion of the 60,000 or more air-conditioning systems in the U.S. that use CFCs as refrigerants, the good news, according to York International, is that the energy efficiency of these systems can be dramatically improved with new technology, meaning quicker paybacks and long-term cost savings. The savings, in fact, have been calculated to range between $200,000 and $2 million, depending on local weather conditions, over a 25-year operating life.”).

49 GEF (2009) CHILLER ENERGY EFFICIENCY PROJECT. 4 (“Given chillers normally consume more than 30% of the total energy consumption in large commercial buildings and industrial establishments, implementation of this project would support India’s efforts in reaching its goal and also in raising awareness of the potential energy savings in large energy consumers.”).

50 UNEP & CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO₂ AND HFC CASE STUDIES. 30 (For example, in one of the case studies, “it is projected that the carbon footprint of the store will be reduced by 85% relative to a baseline store. Of the 85% reduction, 58% is attributable to reduced energy use while the remaining 27% is attributable to the direct emissions avoided by using propane as the refrigerant.”). Similar energy efficiency gains have been achieved in Japan. ATMosphere (2014) ATMOSPHERE ASIA 2014 SUMMARY REPORT.

53 Shah N., Wei M., Letschert V., & Phadke A., (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, (“While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO₂ in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO₂ by 2050.”).

54 Shah N., Wei M., Letschert V., & Phadke A., (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, 26 (“The world room air conditioner market is growing fast with increasing urbanization, electrification, rising incomes and falling air conditioner prices in many developing economies. We estimate an additional 700 million units will be added to the global AC stock by 2030 and 1.6 billion by 2050 under current trends. In the absence of policy to mitigate the impact of this growth, it is expected to have a large-scale impact on electricity generation capacity and peak load particularly in economies with hot climates, and contribute significantly to GHG emissions.”).

55 Shah N., Wei M., Letschert V., & Phadke A., (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory; See also Natural Resources Defense Council (2012) Bhaskar Deol Guest Blog: Reducing Delhi’s Power Crunch Through Appliance Efficiency (“Two recent studies, one by Maharashtra Electricity Regulatory Commission (MERC), and another by India’s Bureau of Energy Efficiency (BEE), show that AC power demand forms a lion’s share of peak demand in Indian cities. The MERC study pegs power demand from ACs at 40% of the total demand for the city of Mumbai in a peak summer month and the BEE study estimates that a staggering 60% of peak demand is used up by air-conditioners.”); and The Economic Times, Air Conditioner Sales Soar up to 30 percent (4 June 2013) (“The sizzling summer may have made consumers bear the brunt of heat but air conditioner makers are laughing all the way to the bank with sales soaring by up to 30 per cent this season.”).

56 Phadke A., Adhyankar N., Shah N. (2014) AVOIDING 100 NEW POWER PLANTS BY INCREASING EFFICIENCY OF ROOM AIR CONDITIONERS IN INDIA: OPPORTUNITIES AND CHALLENGES, Lawrence Berkeley National Laboratory, at 16-17, Table 4 (“We estimate that about 30% of the urban households are likely to own a room air conditioner by 2020 and about 73% are likely to own a room air conditioner by 2030.”).

57 Shah N., Wei M., Letschert V., & Phadke A., (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, 28 (“For example, air conditioning represents about 30% of current and forecasted summer load in warm climates such as California, about 40-60% of the total summer load on typical summer days in metropolitan areas in hot climates like Delhi, India compared to typical winter days and can even triple summer load in very hot areas such as New South Wales, Australia.”).

Air conditioners could add as much as 140 GW to peak load by 2030 and management of the peak contribution is critical for maintaining supply security and avoiding load shedding. The new U.S.-India Collaboration on Smart and Efficient Air Conditioning and Space Cooling is intended to advance policies and innovation to drive mass deployment and rapid uptake of high-efficiency cooling equipment and technologies to capture significant energy savings, potentially avoiding the need to build as many as 120 large power plants.

64 Shah N., et al. (2013) COOLING THE PLANET: OPPORTUNITIES FOR DEPLOYMENT OF SUPER-EFFICIENT ROOM AIR CONDITIONERS, Lawrence Berkeley National Laboratory, 69 (“As shown above in figure 4-5, for most economies ESEERs (European Seasonal Energy Efficiency Ratio) of over 6 W/W are attainable at costs (to the consumer) of conserved electricity between 5 and 15 cents per kWh. In economies with a higher cost of capital (i.e. discount/interest rates) such as Brazil, or low hours of use such as Mexico or China, higher efficiency ACs carry a larger cost of conserved electricity, when compared to India or UAE. For countries such as Japan where ACs are used for both heating and cooling, and India or UAE, where ACs are used for many hours annually, very high ESEERs are attainable at low cost per unit of electricity saved.”).

Halocarbons and related compounds: A comprehensive review

98 Godrej Appliances Raises the Bar for Energy Efficient Products in India (20 March 2012); and Press Release, Godrej Appliances

Godrej Appliances Starts a Global Revolution with Its Green Air Conditioners (3 April 2012).

93 U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20-21; see also CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO2, and HFO CASE STUDIES.

88 Schwarz W., et al. (September 2011), PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) No 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES, FINAL REPORT, Annex IV: Global Data/Input Sheets; see also Zeiger B., et al. (2014) ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES.

Godrej Appliances Crosses the Bar for Energy Efficient Products in India (20 March 2012); and Press Release, Godrej Appliances

Godrej Appliances Starts a Global Revolution with Its Green Air Conditioners (3 April 2012).

81 Schwarz W., et al. (September 2011), PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) No 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES, FINAL REPORT, Annex IV: Global Data/Input Sheets; see also Zeiger B., et al. (2014) ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES.

78 U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20-21; see also CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO2, and HFO CASE STUDIES.

77 U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20-21; see also CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO2, and HFO CASE STUDIES.

76 UNEP (2011) HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESES REPORT, 29.

75 Schwarz W., et al. (September 2011), PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) No 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES, FINAL REPORT, Annex IV: Global Data/Input Sheets; see also Zeiger B., et al. (2014) ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES.

73 Schwarz W., et al. (September 2011), PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) No 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES, FINAL REPORT, Annex IV: Global Data/Input Sheets; see also Zeiger B., et al. (2014) ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES.

72 U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20-21; see also CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO2, and HFO CASE STUDIES.

71 U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20-21; see also CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO2, and HFO CASE STUDIES.

70 UNEP (2015) DISTRICT ENERGY IN CITIES: UNLOCKING THE POTENTIAL OF ENERGY EFFICIENCY AND RENEWABLE ENERGY, 11 ("The development of modern (i.e., energy-efficient and climate-resilient) and affordable district energy systems in cities is one of the least-cost and most-efficient solutions for reducing greenhouse gas emissions and primary energy demand. A transition to such systems, combined with energy efficiency measures, could contribute as much as 58 per cent of the carbon dioxide (CO2) emission reductions required in the energy sector by 2050 to keep global temperature rise to within 2–3 degrees Celsius…. District energy is a proven energy solution that has been deployed for many years in a growing number of cities worldwide. In several European..."
cities, such as Copenhagen (Denmark), Helsinki (Finland) and Vilnius (Lithuania), nearly all of the required heating and cooling is supplied via district networks. The largest district cooling capacity is in the United States, at 16 gigawatts-thermal (GWth), followed by the United Arab Emirates (10 GWth) and Japan (4 GWth)."

106 Zeiger B., et al. (2014) Alternatives to HCFCs/HFCs in Developing Countries with a Focus on High Ambient Temperatures (“An analysis by sectors shows that a climate-friendly replacement for the current and future of HCFCs and high GWP HFCs is possible in most applications: • 55% of HCFCs can be replaced by natural refrigerants and foam blowing agents and additional 13% by unsaturated HFCs (i.e. HFOs) in the short term. • 22% of HCFCs can be replaced in the short term by HFCs with moderate GWP and by HFC/HFO blends in the medium term. • Alternatives for the remainder are not yet available at the same efficiency level and at feasible cost. Here, low GWP solutions are expected by 2025.”)

107 Zeiger B., et al. (2014) Alternatives to HCFCs/HFCs in Developing Countries with a Focus on High Ambient Temperatures.

108 Oak Ridge National Laboratory (2015) Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners, 35 (“This performance evaluation shows that viable replacements exist for both R-22 and R-410A at high ambient temperatures. Multiple alternatives for R-22 performed well, and most R-410A alternatives matched or exceeded the performance of R-410A.”).

109 See, e.g., Davos 2014: Achim Steiner Insider Diary (25 January 2014) Guardian Sustainable Business Blog (statement by UN Under-Secretary General and Executive Director of the UN Environment Programme Achim Steiner: “Next came 'short-lived climate pollutants’ - part of this year's Davos focus on climate change. After working in UNEP for five years to mature cutting edge science into options for action, one of those Davos moments happened. Major business leaders and public officials agreed to join hands in moving on HFCs, methane and black carbon, which drive global warming but also affect our health and economies. Its like teeth wheels clicking into place - you know you have changed gears.”).

111 Press Release, Consumer Goods Forum, Consumer Goods Industry Calls for Positive Next Steps to Continue Scale-Up of Low Carbon Refrigeration (20 January 2016) (“Emma Coles, Vice President, Responsible Retailing at Albert Heijn and Royal Ahold, and Andre Fournie, Senior Manager, Environmental Value at SABMiller plc, Co-Chairs of CGF’s Refrigeration Working Group, said, ‘The CGF has been a leading voice on phasing out harmful HFC refrigerants since 2010. And, although 2015 is now over, we remain committed to helping members amplify the impact of their solutions and in bringing the entire industry forward. With this in mind, the Board has called on the CGF’s Sustainability team to look forward and discuss how best to drive scale-up beyond 2015, including the possibility of a new resolution.”).
Chemours (then DuPont), Emerson Climate Technologies, and the Alliance for Responsible Atmospheric Policy (2011) launched the Alliance for Responsible Atmospheric Policy (Alliance) to support a planned, orderly global phasedown of HFCs under the Montreal Protocol treaty. By 2015, the Alliance had the opportunity to participate in an HFC industry roundtable discussion hosted at the White House. The companies and organizations that pledged HFC reductions include: Chemours, Daikin Industries Ltd., Danfoss, Demilec, Dow Chemical, Fomo Products, Hillphoenix, Honeywell, Johnson Controls, Inc, NCFI Polyurethanes, Roundy’s Supermarkets, Inc, Target, Thermo Fisher Scientific, The Alliance for Responsible Atmospheric Policy, The Air Conditioning, Heating and Refrigeration Institute (AHR), and the Heating & Refrigeration Institute, Arkema, Coca-Cola, Carrier, Danfoss, Chemours (then DuPont), Emerson Climate Technologies, Goodman Manufacturing Company, Hillphoenix, Honeywell, Johnson Controls, Kroger, Lapolla, Los Angeles Department of Water and Power (LADWP), Mission Pharmacal, PepsiCo, Red Bull, SEVO Systems, Target, Thermo King, & True Manufacturing.

The Alliance for Responsible Atmospheric Policy (2015) announced its support for global efforts to reduce the emissions of high-GWP HFCs and to promote technology innovation for low-GWP substitute compounds and technologies. Numerous Alliance member companies also made specific commitments towards these goals. In sum, the Alliance pledged to take actions and support policies to reduce global HFC use by 80 percent by 2050. We further emphasized these goals the following week at the United Nations Secretary General’s Summit, where we were invited to outline the HFC action plan of the global Climate and Clean Air Coalition (CCAC).”, and The Alliance for Responsible Atmospheric Policy (2015) Industry Actions to Responsibly Meet Society’s Needs: Refrigeration, Air Conditioning, Thermal Insulation and Other Applications (The Alliance for Responsible Atmospheric Policy (Alliance) supports a planned, orderly global phasedown of substances with high global warming potentials (GWP) HFCs, improved application energy efficiency, leakage reduction, and recovery/reuse or destruction at application end-of-life.

Press Release, The Alliance for Responsible Atmospheric Policy, Alliance Highlights Climate Progress on HFCs (5 December 2015) (“Significant progress has been made in the effort to manage HFC emissions under the Montreal Protocol treaty,” said Alliance Executive Director Kevin Fay. “Industry in the United States and around the globe has contributed to the policy discussions in a major way, in addition to the enormous commitment to development of low-global warming potential compounds and technologies that will replace the current HFC technologies.”).

Coca-Cola Cooler Choice: Freezing Out HFC In Favor Of Natural Refrigerant (22 January 2014) (Coca-Cola reports that “we have placed the 1 millionth HFC-free cooler, using natural refrigerant, in the marketplace. This marks significant progress toward our 2015 system-wide goal for all new cold-drink equipment to be HFC-free.”).

Refrigerants Naturally! PepsiCo (2013); Red Bull (2013) Efficient Cooling; Unilever (2014) Targets & Performance; Fleury J-M (2011) Roll out and Experience of Natural Refrigerants based technology at Carrefour, presentation at ATMOSphere Europe 2011, Brussels, 11-12 October 2011; and U.S. EPA (2013) Benefits of Addressing HFCs Under the Montreal Protocol (“Sanyo has produced CO2 compressors since 2001, originally developed for heat pump water heaters. Using this technology, Sanyo developed the first CO2 vending machine, which was field tested in February 2004 in Australia. Results from these tests showed that the CO2 system consumed 17% less energy compared to the comparable HFC-134a system during the summer season. Beginning in 2005, CO2 vending machines began being sold in Japan and have represented a significant and growing portion of the Japanese market—estimated at 116,000 units in 2010.”).

2012 Press Release, Whirlpool Corporation, Whirlpool Corporation Partners with Honeywell, Announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators (22 January 2014) (“Whirlpool Corporation announced it has implemented the use of Honeywell’s Solstice® Liquid Blowing Agent [HFO-123zd(E)], into its environmentally responsible and energy efficient insulation used in U.S.-made refrigerators and freezers. The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator. The conversion of all U.S. manufacturing centers is scheduled to be completed by the end of 2014 and the impact to the global warming effect will be the equivalent of removing more than 400,000 cars from the road.”).

2013 Press Release, Whirlpool Corporation, Whirlpool Corporation Partners with Honeywell, Announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators (22 January 2014) (“Whirlpool Corporation announced it has implemented the use of Honeywell's Solstice® Liquid Blowing Agent [HFO-123zd(E)], into its environmentally responsible and energy efficient insulation used in U.S.-made refrigerators and freezers. The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator. The conversion of all U.S. manufacturing centers is scheduled to be completed by the end of 2014 and the impact to the global warming effect will be the equivalent of removing more than 400,000 cars from the road.”). Honeywell further states that its new product will improve energy efficiency by 2% over HFC-245fa, and by 10-12% over hydrocarbon (Cyclopentane.).

2013 China State Council (2014) 2014-2015 Energy Conservation, Emissions Reduction and Low Carbon Development Action Plan (in Chinese) (“为确保全面完成‘十二五’节能减排降碳目标，制定本行动方案……加强对氢氟碳化合物（HFCs）排放的管理，加快氢氟碳化合物销毁和替代，‘十二五’期间累计减排2.8亿吨二氧化碳当量.”) (English translation: “The action plan is made to ensure that all the energy conservation and emission reduction targets set for the twelfth five year period… Strengthen the management of HFCs emission. Accelerate the destruction and replacement of HFCs. The total emission reduction of HFCs should reach 0.28 billion tonnes CO2-eq during the twelfth five-year period.”).

Moreover, the availability of new technologies is likely to cause some reductions in the use of high-GWP HFCs in other countries, thereby increasing the climate benefits of these national regulations. If global adoption of these technology changes is assumed, the response of the baseline scenario is a reduction in emissions from 4.0–5.3 to 1.5–1.9 GtCO₂-eq yr⁻¹ by 2050. Cumulative emissions are reduced by 38–46 GtCO₂-eq, from 91–105 to 53–59 GtCO₂-eq, over the 2015–2050 period. Similarly, if global adoption of the technologies required to meet the USA SNAP changes is assumed, the response is a reduction in global emissions to 1.9–2.5 GtCO₂-eq yr⁻¹ by 2050 and a reduction in cumulative emissions by 36–44 GtCO₂-eq over 2015–2050. Similar reductions in emissions are found for the Japanese regulations: emissions reduced to 2.0–2.6 GtCO₂-eq yr⁻¹ by 2050 and a cumulative emissions reduction of 28–35 GtCO₂-eq over 2015–2050. Thus, assuming the global adoption of any one of these national regulations reduces global HFC emissions by 50–65% by 2050.”}

142 Executive Office of the President (2013) The President’s Climate Action Plan, 10 (“Hydrofluorocarbons (HFCs), which are primarily used for refrigeration and air conditioning, are potent greenhouse gases. In the United States, emissions of HFCs are expected to nearly triple by 2030, and double from current levels of 1.5 percent of greenhouse gas emissions to 3 percent by 2020. To reduce emissions of HFCs, the United States can and will lead both through international diplomacy as well as domestic actions. In fact, the Administration has already acted by including a flexible and powerful incentive in the fuel economy and carbon pollution standards for cars and trucks to encourage automakers to reduce HFC leakage and transition away from the most potent HFCs in vehicle air conditioning systems. Moving forward, the Environmental Protection Agency will use its authority through the Significant New Alternatives Policy Program to encourage private sector investment in low-emissions technology by identifying and approving climate-friendly chemicals while prohibiting certain uses of the most harmful chemical alternatives. In addition, the President has directed his Administration to purchase cleaner alternatives to HFCs whenever feasible and transition over time to equipment that uses safer and more sustainable alternatives.”); See also Bianco N. et al. (2013) Can the U.S. Get There From Here?: Using Existing Federal Laws and State Action to Reduce Greenhouse Gas Emissions, World Resources Institute, 1.

144 The White House Office of the Press Secretary, EO 13693 Planning for Federal Sustainability in the Next Decade (19 March 2015) (“Through a combination of more efficient Federal operations such as those outlined in this Executive Order (order), we have the opportunity to reduce agency direct greenhouse gas emissions by at least 40 percent over the next decade while at the same time fostering innovation, reducing spending, and strengthening the communities in which our Federal facilities operate. **ii**) purchasing sustainable products and services identified by EPA programs including: (A) Significant New Alternative Policy (SNAP) chemicals or other alternatives to ozone-depleting substances and high global warming potential hydrofluorocarbons, where feasible, as identified by SNAP.”).

145 U.S. Federal Register, Federal Acquisition Regulation; High Global Warming Potential Hydrofluorocarbons (11 May 2015) (“DoD, GSA, and NASA are proposing to amend the Federal Acquisition Regulation (FAR) to implement Executive branch policy in the President’s Climate Action Plan to procure, when feasible, alternatives to high global warming potential (GWP) hydrofluorocarbons (HFCs). This will allow agencies to better meet the greenhouse gas emission reduction goals and reporting requirements of the Executive Order (E.O.) 13693 of March 25, 2015, Planning for Sustainability in the Next Decade. E.O. 13693 subsumes both E.O. 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management as well as E.O. 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic Performance. **This rule proposes to modify the existing FAR clauses at 52.223-11, Ozone-Depleting Substances, and 52.223-12, Refrigeration Equipment and Air Conditioners, to address high GWP HFCs, as well as ozone-depleting substances. In addition, the rule proposes to add two new clauses specifically focused on use of alternatives, where feasible, in place of high GWP HFCs in aerosol cans (as propellants or solvents) and as foam blowing agents.”).

149 CA SB-605 (2014) *Short-lived climate pollutants*. (“SECTION 1. Chapter 4.2 (**no later than January 1, 2016, the state board shall complete a comprehensive strategy to reduce emissions of short-lived climate pollutants in the state. * * * (d) For purposes of this section, “short-lived climate pollutant” means an agent that has a relatively short lifetime in the atmosphere, from a few days to a few decades, and a warming influence on the climate that is more potent than that of carbon dioxide.***).

151 Environmental Defense Fund (2015) *California: An Emissions Trading Case Study*. 4 (The cap-and-trade program is composed of three compliance periods. . . . The third compliance period will run from 2018 to 2020. The program applies to: carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), sulphur hexafluoride (SF₆), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen trifluoride and other fluorinated GHGs. The system covers approximately 450 entities.***).

152 India-California Air Pollution Mitigation Program (ICAMP), *Initiative for Mitigating Air Pollution from the Transportation Sector, FIRST DRAFT*, October 2013.

153 India-California Air Pollution Mitigation Program (ICAMP) (2014) *Options to reduce road transport pollution in India* at xvi (“[ICAMP’s] primary objectives are to improve human health and crop yields through reduction of air pollution (PM₂.₅, ozone, and black carbon), particularly from the road transportation sector. The secondary objective is to mitigate negative effects of regional climate change such as reductions in precipitation, warming, and melting of Himalayan glaciers. Towards this latter objective, ICAMP has a goal to target those air pollutants that also reduce radiative forcing of global warming. Such air pollutants (e.g., black carbon and gases that produce ozone) are referred to as short-lived climate pollutants (SLCP).”); Id., 4 (“Black carbon and ozone, along with methane and hydrofluorocarbons (HFCs) are referred to as short-lived climate pollutants.”).

154 The Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (2014) *CCAC - Initiatives*.

155 The Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (2014) *Promoting HFC Alternative Technology and Standards*.

160 Congreso de los Diputados (2013) *Boletín oficial de las cortes generales congreso de los diputados*, serie A, num. 51-1, BOCG-10-A-54-1 (in Spanish); see also Ammonia 21 (July 2013) *Spain Considers F-gas Tax at €20/CO₂eq*.

161 OzoneAction, *Turkey to strengthen legislation on ozone-depletion and fluorinated gases* (18 February 2013).

163 UNEP (2009) *Information on Hydrofluorocarbons and Perfluorocarbons Received from Developing Countries*, UNEP/OzL.Pro/Workshop.4/INF/2, 2.

164 Brack, D (2015) *National Legislation on Hydrofluorocarbons*, 16 (“The government provides support for the retrofitting of refrigeration systems (specifically refrigerators) and air-conditioning systems (split, window and rooftop types) to hydrocarbons. The government also possesses the power to apply control measures to the import of HFCs, though it is not clear whether these control measures have been applied.”)

165 Brack, D (2015) *National Legislation on Hydrofluorocarbons*, 16 (“Seychelles is introducing a new policy on HFCs from 2015. It includes tax incentives to encourage the import of low-GWP alternatives: zero import duty and value-added tax (VAT) on substances that are both zero ODP and zero GWP, 100 per cent tax on products with very high GWPs. In addition, 41
new buildings, including hotels (the main users of HCFCs in Seychelles), are required to ensure that ozone safe, low-GWP alternatives are used.”

170 Xu Y., Zaelke D., Velders G. J. M., & Ramanathan V. (2013) The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys. 13:6083-6089; see also World Meteorological Organization and UNEP (2014) Scientific Assessment of Ozone Depletion: 2014 (“This two-year effort by 280 scientists from 36 countries calculates that the success of the Montreal Protocol has put the stratospheric ozone layer on the path to recovery in the next few decades; that it also has provided climate mitigation of “about 10 gigatonnes of avoided CO2-equivalent emissions per year, which is about five times larger than the annual emissions reduction target for the first commitment period (2008–2012) of the Kyoto Protocol”; and that the high growth rate of HFCs threatens to cancel the treaty’s past climate mitigation.”). See note 19 and Figure 4 for calculations of total climate mitigation provided by Montreal Protocol, which is 10 to 20 times more than total for Kyoto Protocol’s first commitment period.

174 Multilateral Fund Secretariat (2016) Welcome to the Multilateral Fund for the Implementation of the Montreal Protocol (“Contributions to the Multilateral Fund from developed countries, or non-Article 5 countries, are assessed according to the UN scale of assessment. As at 15 May 2015 the contributions made to the Multilateral Fund by some 45 countries (including Countries with Economies in Transition or CEIT countries) totaled over US$ 3.34 billion.”).

175 UNEP (2014) Report of the Ninth Meeting of the Conference of the Parties to the Vienna Convention for the Protection of the Ozone Layer and the Twentieth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UN Doc UNEP/OzL.Conv.10/7 (“The parties agree] [to adopt a budget for the Multilateral Fund for the Implementation of the Montreal Protocol for 2015–2017 of $507,500,000 on the understanding that $64,000,000 of that budget will be provided from anticipated contributions due to the Multilateral Fund and other sources for the 2012-2014 triennium, and that $6,000,000 will be provided from interest accruing to the Fund during the 2015–2017 triennium.”); also see UNEP (2012) Report of the Sixty-Fifth Meeting of the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, UN Doc. UNEP/OzL.Pro/ExCom/65/30/Corr.1, Annex 1.

177 UNEP (2011) Compliance Assistance Programme, Regional Networks of National Ozone Units.

Table 2: Carbon price of approximately US$ 15 per tonne of CO₂

Different Levels of Efforts Reflecting the Ease of Access

Report of the Technology and Economic Assessment Panel (September 2015)

189 A of beginning the conversion in 2020.

188 Going from MIT 200 ktonnes during 2020 estimate what the costs for servicing would be. In the case of the MIT 4 US$ 3010 ± 370 million; MIT 4 and MIT 5 US$ 2300 ± 310 million.

187 In case of the MIT 4 and MIT 5 the following (rounded) integrated total refrigerant demand for the three scenarios for the period 2020-2030 in Mt CO₂–eq.: BAU: 16,000 Mt CO₂–eq. MIT-3: 6,500 Mt CO₂–eq. MIT-4: 9,800 Mt CO₂–eq. MIT-5: 12,000 Mt CO₂–eq. The MIT-3 reduction from BAU of 9,500 Mt CO₂–eq. represents a saving of 60%. In case of the MIT-4, with a reduction of about 6200 Mt CO₂–eq., there is a saving of 40% from BAU. The MIT-5 reduction of 4,000 Mt CO₂–eq. represents a saving of 30% from BAU only.

186 This is comparable to (and therefore consistent with) the funding range determined for the conversion of HFC new manufacturing in the MIT-3 scenario (and lower than for the MIT-4 and MIT-5 scenarios)."

185 Compare estimated costs in Table 6-16 with the reduced demand in MIT-3 compared to BAU in table 6-10. UNEP (2015) Decision XXVI/9 Update Task Force Report Additional Information on Alternatives to Ozone-Depleting Substances, Report of the Technology and Economic Assessment Panel (September 2015) (“Costs for manufacturing conversion only. The total costs calculated for manufacturing conversion in Article 5 Parties are estimated as follows: MIT-3 US$ 2300 ± 310 million; MIT-4 US$ 3010 ± 370 million; MIT-5 US$ 3220 ± 430 million. Table 6-10 shows the following (rounded) integrated total refrigerant demand for the three scenarios for the period 2020-2030 in Mt CO₂–eq.: BAU: 16,000 Mt CO₂–eq. MIT-3: 6,500 Mt CO₂–eq. MIT-4: 9,800 Mt CO₂–eq. MIT-5: 12,000 Mt CO₂–eq. The MIT-3 reduction from BAU of 9,500 Mt CO₂–eq. represents a saving of 60%. In case of the MIT-4, with a reduction of about 6200 Mt CO₂–eq., there is a saving of 40% from BAU. The MIT-5 reduction of 4,000 Mt CO₂–eq. represents a saving of 30% from BAU only.”)

184 In case of the MIT-4 and MIT-5 the following (rounded) integrated total refrigerant demand for the three scenarios for the period 2020-2030 in Mt CO₂–eq.: BAU: 16,000 Mt CO₂–eq. MIT-3: 6,500 Mt CO₂–eq. MIT-4: 9,800 Mt CO₂–eq. MIT-5: 12,000 Mt CO₂–eq. The MIT-3 reduction from BAU of 9,500 Mt CO₂–eq. represents a saving of 60%. In case of the MIT-4, with a reduction of about 6200 Mt CO₂–eq., there is a saving of 40% from BAU. The MIT-5 reduction of 4,000 Mt CO₂–eq. represents a saving of 30% from BAU only.

183 In case of the MIT-4 and MIT-5 the following (rounded) integrated total refrigerant demand for the three scenarios for the period 2020-2030 in Mt CO₂–eq.: BAU: 16,000 Mt CO₂–eq. MIT-3: 6,500 Mt CO₂–eq. MIT-4: 9,800 Mt CO₂–eq. MIT-5: 12,000 Mt CO₂–eq. The MIT-3 reduction from BAU of 9,500 Mt CO₂–eq. represents a saving of 60%. In case of the MIT-4, with a reduction of about 6200 Mt CO₂–eq., there is a saving of 40% from BAU. The MIT-5 reduction of 4,000 Mt CO₂–eq. represents a saving of 30% from BAU only.

warming potentials. The ‘Medium Effort’ banks would ultimately require a carbon price in excess of US$ 35 per tonne of CO₂ saved to ensure their effective management based on the average global warming potentials.

192 Proposed amendment to the Montreal Protocol submitted by Canada, Mexico and the United States of America, UNEP/OzL.Pro.WG.1/35/3 (8 March 2015) (“Cumulative benefits of the HFC phasedown estimated by the U.S. Government are about 1.900 million metric tons of carbon dioxide equivalent (MMT CO₂-equ) through 2020, and about 84.100 MMTCO₂-equ through 2050. Cumulative benefits from HFC-23 byproduct emissions controls as estimated by the U.S. Government amount to an additional 11.300 MMTCO₂-equ through 2050.”).

194 Proposed amendment to the Montreal Protocol submitted by India, UNEP/OzL.Pro.WG.1/36/4 (30 April 2015).

195 Process to regulate the production and consumption of hydrofluorocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer – Submission by Zimbabwe and Senegal on behalf of Africa States, UNEP/OzL.Pro.WG.1/35/CRP.1 (20 April 2015) (“Requests the Open-ended Working Group at its thirty-sixth meeting in July 2015: 1. To agree to establish a contact group to consider proposals to amend the Montreal Protocol, including those that have been submitted for consideration by the Meeting of the Parties.”).

196 Proposed amendment to the Montreal Protocol submitted by European Union and its Member States, UNEP/OzL.Pro.WG.1/36/5 (30 April 2015) (“Article 5 Parties are required to freeze the production of HFCs - expressed in CO₂ equivalents - in 2019, and reach a long-term reduction target by 2040. The baseline includes a share of HCFC production – expressed in CO₂ equivalents - acknowledging that during and after the chosen reference period (2009-2012) a conversion from HCFC to HFC production may have taken place. Intermediate reduction steps for production should be agreed by 2020. Article 5 parties are required to freeze the combined climate impacts of HCFC and HFC consumption - expressed in CO₂ equivalents - beginning in 2019, while maintaining the existing HCFC phase-out schedule. A long-term phase-down schedule for this combined HFC/HCFC consumption should be agreed by 2020, including the date for the last phase-down step. This commitment builds on previous decisions under the Montreal Protocol addressing the climate impacts of the replacement of ODS.”; see also European Union (2014) ENABLING A GLOBAL PHASE-DOWN OF HFCs, A DISCUSSION PAPER SUBMITTED BY THE EUROPEAN UNION (“The EU fully supports an amendment of the Montreal Protocol to achieve a global phase down of the consumption and production of hydrofluorocarbons (HFCs). Non-Article 5 countries, as major consumers of HFCs, must take the lead in this effort. At the same time, the EU believes that a broader base of support for an HFC amendment to the Montreal Protocol could be built up by more directly addressing the different situations in Article 5 and non-Article 5 countries in their progress in phasing-out HCFCs. The respective commitments have to respond to specific national circumstances, such as climate conditions and the expected growth of the refrigeration and air conditioning sector.”). In 2013 the European Union also called on the UNFCCC parties to support a phasedown of HFCs under the Montreal Protocol. European Union, SUBMISSION BY LITHUANIA AND THE EUROPEAN COMMISSION ON BEHALF OF THE EUROPEAN UNION AND ITS MEMBER STATES (16 September 2013) (“We must build upon and widen the support of G20 Leaders to phase down HFCs under the Montreal Protocol. As such we call on all Parties to the UNFCCC for their support, and would like to see this discussed specifically in Warsaw in the context of ADP WS2.”).

198 Additional mitigation is possible when banks of HFCs are collected and destroyed, with about 39–64 GtCO₂-eq available if this is done in 2020. See Velders G. J. M., et al. (2007) The importance of the Montreal Protocol in protecting climate, Proc. Nat’l. Acad. Sci. U.S.A. 104:4814-4819; and Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions. Atmos. Chem. Phys. Discuss. 14:4563-4572 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146GtCO₂-eq of cumulative emissions be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO₂-eq could also be avoided in 2050.”).

199 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings”). See also UNEP News Centre (2015) Montreal Protocol Parties Devise Way Forward to Protect Climate Ahead of Paris COP21 (“The parties agreed to work together, within the Montreal Protocol, towards an HFC amendment in 2016 by first resolving challenges and generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings. This outcome was agreed after extensive negotiations during the 27th Meeting of the Parties (MOP27) to the Protocol, hosted by the Government of the United Arab Emirates in Dubai from 1 to 5 November.”).

200 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To recognize the progress made at the Twenty-Seventh Meeting of the Parties on the challenges identified in the mandate of the contact group agreed at the resumed thirty-sixth meeting of the Open-ended Working Group (listed in annex I to the present decision), on the feasibility and ways of managing HFCs, including development of a common understanding on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity-building and the need for an exemption for high-ambient-temperature countries, and to endorse the concepts listed in annex II to the present decision.”). See also ISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1–5 November 2015 Earth Negotiations Bulletin 19(115) (“MOP 27 immediately followed the two-day resumed session of the 36th Open-ended Working Group (OEWG 36), which had agreed on a mandate for a contact group on the feasibility and ways of managing hydrofluorocarbons (HFCs). The contact group was established and HFCs were the “major topic” under debate throughout the week.”).
201 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To recognize that further progress still needs to be made, in particular with respect to other challenges identified in the contact group mandate, for example conversion costs, technology transfer and intellectual property rights.”). See also ISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1–5 November 2015 Earth Negotiations Bulletin 19(115) (“Following protracted negotiations that finally concluded in the early hours of Friday morning, parties agreed to a “roadmap” for negotiating an HFC amendment; this agreement included provision for an additional OEWG meeting and an extraordinary MOP in 2016.”). See also UNEP News Centre (2015) Montreal Protocol Parties Devise Way Forward to Protect Climate Ahead of Paris COP21 (“The parties recognized the progress made at MOP27 on discussing the challenges on feasibility and ways of managing HFCs, on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity building, and the need for an exemption for high ambient temperature countries. Further progress still needs to be made with respect to other challenges. The parties will continue their deliberations in 2016 with a series of Open-Ended Working Group meetings and others, including an extraordinary Meeting of the Parties.”).

203 G8 (2009) G8 Declaration: Responsible Leadership for a Sustainable Future (“66. We recognize that the accelerated phase-out of HFCs mandated under the Montreal Protocol is leading to a rapid increase in the use of HFCs, many of which are very potent GHGs. Therefore we will work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework. We are also committed to taking rapid action to address other significant climate forcing agents, such as black carbon. These efforts, however, must not draw away attention from ambitious and urgent cuts in emissions from other, more long-lasting, greenhouse gases, which should remain the priority.”).

204 UNEP (2009) Declaration on High-GWP Alternatives to ODSs, in UNEP (2009) Report of the Twenty-First Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (The 2009 Declaration was signed by Angola, Cameroon, Canada, Chad, Comoros, Congo, Dominican Republic, Egypt, Fiji, Gabon, Grenada, Guinea Bissau, Indonesia, Japan, Kiribati, Madagascar, Marshall Islands, Mali, Mauritania, Mauritius, Mexico, Micronesia, Morocco, Namibia, New Zealand, Nigeria, Papau New Guinea, Palau, Saint Lucia, Solomon Islands, Somalia, Sudan, Switzerland, Timor-Leste, Togo, Tonga, Tunisia, United States, Zambia.).

Climate and Clean Air Coalition to Reduce Short Lived Climate Pollutants (2014) Executive Summary.

206 Press Release, The White House Office of the Press Secretary (2012) Fact Sheet: G-8 Action on Energy and Climate Change (“In the spirit of increasing mitigation efforts, we agree to collectively join the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants, launched on February 16, 2012. This new initiative will enhance our collective ambition in addressing climate change by complementing efforts to address CO2 emissions. By developing strategies to reduce short term pollutants – chiefly methane, black carbon, and hydrofluorocarbons – we can help reduce global warming, improve health, and increase agricultural productivity, as well as energy security”); and Press Release, The White House Office of the Press Secretary (2012) Camp David Declaration.

207 United Nations (2012) Resolution Adopted by the General Assembly: The Future We Want, A/RES/66/288 (“222. We recognize that the phase-out of ozone-depleting substances is resulting in a rapid increase in the use and release of high global-warming potential hydrofluorocarbons to the environment. We support a gradual phase-down in the consumption and production of hydrofluorocarbons.”).

208 UNEP Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol (2013) Report of the Sixty-Ninth Meeting of the Executive Committee, Ozl.Pro/ExCom/69/40, 30; and Press Release, Multilateral Fund for the Implementation of the Montreal Protocol, Multilateral Fund approves landmark project for China with ozone and climate benefits – up to $385 million of funding over the next 17 years (22 April 2013) (“In a landmark decision the Multilateral Fund’s Executive Committee has agreed to provide China, the largest producer and consumer of HFCs, an amount up to US $385 million for the entire elimination of its industrial production of ozone depleting substances (ODS) by the year 2030”).

210 European Council (2013) Submission by Ireland and the European Commission of the European Union and its Member States (“The 2011 Bali Declaration under the Montreal Protocol lists 112 signatories committed to explore further and pursue effective means of transitioning to environmentally friendly alternatives to high GWP HFCs.”).

211 Arctic Council Secretariat (2013) Kiruna Declaration: On the occasion of the Eighth Ministerial Meeting of the Arctic Council, Further support for addressing HFCs is expressed in the 2012 G8 Camp David Declaration (focusing on the package of four short-lived climate pollutants, which includes HFCs); the 2009 G8 Declaration (“Therefore we will work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework.”); and the 2008 Declaration of Leaders from the Major Economies Meeting on Energy Security and Climate Change (“To enable the full, effective, and sustained implementation of
Convention between now and 2012, we will: … Continue to promote actions under the Montreal Protocol on Substances That Deplete the Ozone Layer for the benefit of the global climate system…”.

213 Press Release, The White House Office of the Press Secretary, United States and China Agree to Work Together on Phase - Down of HFCs (8 June 2013).

214 Executive Office of the President (2013) THE PRESIDENT’S CLIMATE ACTION PLAN (mentioning the Significant New Alternatives Policy Program as a policy tool to “encourage private sector investment in low-emissions technology by identifying and approving climate-friendly chemicals while prohibiting certain uses of the most harmful chemical alternatives”); and Press Release, The White House Office of the Press Secretary Remarks by the President on Climate Change (25 June 2013). See also Bianco N., et al. (2013) CAN THE U.S. GET THERE FROM HERE?: USING EXISTING FEDERAL LAWS AND STATE ACTION TO REDUCE GREENHOUSE GAS EMISSIONS, World Resources Institute, 1 (In the U.S., “Eliminating HFCs represents the biggest opportunity for GHG emissions reductions behind power plants,” and would provide 23% of the emissions reductions needed to achieve the U.S.’s 2020 reduction goal (17% below 2005 emissions)).

216 Press Release, Republic of South Africa Department of Environmental Affairs, Joint Statement Issued at the Conclusion of the 15th BASIC Ministerial Meeting on Climate Change (28 June 2013).

217 Press Release, U.S. Department of State, U.S.-China Climate Change Working Group Fact Sheet (10 July 2013); see also Press Release, U.S. Department of State, Report of the U.S.-China Climate Change Working Group to the Strategic and Economic Dialogue (10 July 2013) (“Additionally, President Barack Obama and President Xi Jinping made the announcement on June 8, 2013 that the United States and China agreed to work together and with other countries through multilateral approaches that include using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while continuing to include HFCs within the scope of UNFCCC and its Kyoto Protocol provisions for accounting and reporting of emissions. The Working Group will work effectively to carry forward this effort.”); and Press Release, U.S. Department of State, U.S.-China Strategic and Economic Dialogue V Strategic Track Select Outcomes (12 July 2013) (“They will also work together to implement the agreement of Presidents Obama and Xi on HFCs.”).

219 Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (2013) COMMUNIQUÉ OF THE THIRD MEETING OF THE HIGH LEVEL ASSEMBLY.

220 Press Release, White House Office of the Press Secretary, United States and China Reach Agreement on Phase Down of HFCs (6 September 2013).

221 The St. Petersburg G20 Leaders’ Declaration includes Argentina, Australia, Brazil, Canada, China, France, Germany, India, Indonesia, Italy, Japan, Korea, Mexico, Russia, Saudi Arabia, South Africa, Turkey, United Kingdom, United States, and the European Union, as well as support from invited observer countries: Ethiopia, Spain, Senegal, Brunei, Kazakhstan, and Singapore. G20 (2013) G20 Leaders’ Declaration.

222 Press Release, Republic of South Africa Department of Environmental Affairs, Joint Statement Issued at the Conclusion of the 16th BASIC Ministerial Meeting on Climate Change (16 September 2013) (The BASIC countries were silent on HFCs this year. See India Ministry of Environment & Forests, Joint Statement on the 18th BASIC Ministerial Meeting on Climate Change (8 August 2014)); see also UNEP (2013) REPORT OF THE THIRTY-THIRD MEETING OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER, 21-22, (“155. Several representatives raised concerns over the level of financial support that would need to be available [for an HFC phasedown under the Montreal Protocol], especially given developing countries’ limited resources and competing priorities for public funding. Several representatives raised their concern over the availability of funding for both HCFC phase-out and potential HFC phase-down and one representative highlighted the inadequate amounts that his country had thus far received for assisting with HCFC phase-out […] 160. Several representatives from high-ambient-temperature regions explained that the matter of the availability of [HFC] alternatives was a particular concern to them. In their countries, summer temperatures could reach as high as 55° C; in such circumstances, air conditioning was not a luxury but a necessity. Concerns over flammability and safety further limited the availability of alternatives to HFCs […] 162. Several representatives, from parties operating under paragraph 1 of Article 5 and from parties not so operating, underlined the need for the latter to take the lead in demonstrating the technical and economic feasibility of new alternatives.”).

223 Press Release, White House Office of the Press Secretary, U.S.-India Joint Statement (27 September 2013) (“They also supported complementary initiatives, through multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the production and the consumption of HFCs, based on the examination of economically viable and technically feasible alternatives. They will continue to include HFCs within the scope of UNFCCC and its Kyoto Protocol for accounting and reporting of emissions…. Recognizing that climate change is a defining challenge of our time and that there are mutual benefits to intensifying cooperation,” the two leaders also announced an India-U.S. Climate Change Working Group “to develop and advance action-oriented cooperation, as well as to begin an enhanced dialogue focusing on working closely in developing an ambitious climate change agreement for the post-2020 period…”).

224 Press Release, White House Office of the Press Secretary, Fact Sheet: The United States and India – Strategic and Global Partners (27 September 2013).
325 Press Release, Environmental News Network, *Steady March Towards Action on Reducing HFCs Under Montreal Protocol* (25 October 2013). In the decision requesting action by the TEAP, the Parties agreed to: (1) estimate current and future demand for alternatives, including HFCs, and also requested an assessment of the economic costs and implications, and environmental benefits of various scenarios that avoid high-GWP alternatives to currently used ODS, including, HFCs; (2) convene a workshop back-to-back with the 34th OEWG in summer 2014 to continue discussions on HFC management; (3) provide to the Ozone Secretariat, on a voluntary basis, information regarding the avoidance of HFCs under the existing HCFC phase-out; and (4) request the Executive Committee of the Multilateral Fund to consider whether additional demonstration projects to validate low-GWP alternatives and technologies, and additional activities to maximize the climate benefits in the HCFC production sector, would be useful in assisting developing country Parties in further minimizing the environmental impacts of the HFCT phase-out. UNEP (2013) *Draft Report of the Twenty-Fifth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/Ozl.Pro.25/L.1*. See also UNEP (2013) Draft decision XXV/5. Response to the Report by the Technology and Economic Assessment Panel on Alternatives to Ozone-Depleting Substances.

330 U.S. Department of State Official Blog (2014) *We Need To Elevate the Environment in Everything We Do* (“This challenge demands elevated urgency and attention from all of us… Here’s what this guidance means in practice: I. Lead by example through strong action at home and abroad … at the federal, regional, and local level. II. Conclude a new international climate change agreement … applicable to all countries by 2015 to take effect in 2020. III. Implement The Global Climate Change Initiative…. IV. Enhance multilateral engagement … including the Major Economies Forum, Clean Energy Ministerial, Montreal Protocol, and the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants. V. Expand bilateral engagement … on clean energy…. VI. Mobilize financial resources … and leverage billions of dollars of funding to transform our energy economies and promote sustainable land use, as well as working to limit public incentives for high-carbon energy production and fossil fuels. VII. Integrate climate change with other priorities…., including women’s empowerment, urbanization, conflict and national security, and our own management and operations.”). See also U.S. Department of State, *Fact Sheet: Addressing Climate Change: A Top U.S. Priority* (5 March 2014).

332 Press Release, European Commission, *Joint Statement: Deepening the E.U.-China Comprehensive Strategic Partnership for mutual benefit* (31 March 2014), para. 18; see also para. 10 (where the E.U. and China “reaffirmed their commitment to implement their G20 commitments.”).

333 Press Release, The White House Office of the Press Secretary, *The Brussels G-7 Summit Declaration* (5 June 2014) (The G-7 includes Canada, France, Germany, Italy, Japan, the U.K. the U.S., the President of the European Council, and the President of the European Commission.).

334 Press Release, U.S. Department of State, *Joint U.S.-China Press Statements at the Conclusion of the Strategic & Economic Dialogue* (10 July 2014) (“We are working together to phase down the production and the consumption of hydrofluorocarbons, which is a potent greenhouse gas.”).

335 UNEP (2014) *Report of the Thirty-Fourth Meeting of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer* (“[T]he Working Group agreed that interested parties would hold an informal discussion, facilitated by Ms. Gudi Alkemade (Netherlands) and Mr. Obed Meringo Baloyi (South Africa), on the management of HFCs, including the legal and technical issues raised at previous meetings and during the HFC management workshop, and develop options for addressing the issues raised, including the relationship between the Montreal Protocol and the Framework Convention on Climate Change and its Kyoto Protocol.”). See also International Institute for Sustainable Development (2014) *Workshop on Hydrofluorocarbon (HFC) Management and Thirty-fourth meeting of the Open-ended Working Group (OEWG 34) of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer.*

337 CCAC, *Climate and Clean Air Coalition now open to private sector partners* (17 July 2014); see also International Institute for Sustainable Development (2014) *Working Group meeting of the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC).*

338 CCAC, (2014) *UN Climate Summit commitments to reduce short-lived climate pollutants and their impacts in Oil & Gas, Green Freight, HFCs Alternatives, and Municipal Solid Waste.*
They pledged to urgently arrange a meeting of their bilateral task force on HFCs prior to the next meeting of the Montreal Protocol to discuss issues such as safety, cost, and commercial access to new or alternative technologies to replace HFCs. The two sides would thereafter cooperate on next steps to tackle the challenge posed by HFCs to global warming.”)

241 UNEP (2014) **Decision XXVI/9: Response to the Report by the Technology and Economic Assessment Panel on Information on Alternatives to Ozone-depleting Substances.**

242 UNEP (2014) **Decision XXVI/10: 2015-2017 Replenishment of the Multilateral Fund.** (“1. To adopt a budget for the Multilateral Fund for the Implementation of the Montreal Protocol for 2015–2017 of $507,500,000 on the understanding that $64,000,000 of that budget will be provided from anticipated contributions due to the Multilateral Fund and other sources for the 2012-2014 triennium, and that $6,000,000 will be provided from interest accruing to the Fund during the 2015–2017 triennium. The parties note that outstanding contributions from some parties with economies in transition in the period 2012–2014 stands at $8,237,606;”).

244 **Cairo Declaration on Managing Africa’s Natural Capital for Sustainable Development and Poverty Eradication** (6 March 2015) (“43. To urge member States to use the experience, expertise and institutions of the Montreal Protocol on Substances that Deplete the Ozone Layer to phase down the production and consumption of HFCs while continuing to use other existing mechanisms for accounting and reporting of emissions of these substances; 44. To request the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer to work towards establishing an open-ended contact group during its meetings in 2015 onwards to consider, among other things, financial and technological support to Africa to manage HFCs that might result in phasing down the production and consumption of HFCs, taking into account the cost-effectiveness and safety of substitutes and environmental benefits;”)

245 **Proposed amendment to the Montreal Protocol submitted by Canada, Mexico and the United States of America, UNEP/OzL.Pro.WG.1/35/3 (8 March 2015).**

246 **Proposed amendment to the Montreal Protocol submitted by Canada, Mexico and the United States of America, UNEP/OzL.Pro.WG.1/35/3 (8 March 2015).** (“Similar to the 2014 North American proposal, this revised amendment proposal has the potential to produce environmental benefits of more than 90 gigatons of carbon dioxide equivalent (CO2eq) cumulatively by 2050 which is equal to roughly two years of emissions of all anthropogenic greenhouse gases at current emission levels. Therefore, this proposal represents our ideas on how we could avoid rapid HFC growth and achieve substantial environment benefits. We welcome other ideas that we know will be forthcoming and we look forward to working with others to achieve an outcome that is acceptable to all countries.”).

247 **Proposed amendment to the Montreal Protocol submitted by India, UNEP/OzL.Pro.WG.1/36/4 (30 April 2015).**

248 **Proposed amendment to the Montreal Protocol submitted by India, UNEP/OzL.Pro.WG.1/36/4 (30 April 2015).**

249 **Process to regulate the production and consumption of hydrofluorocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer – Submission by Zimbabwe and Senegal on behalf of Africa States, UNEP/OzL.Pro.WG.1/35/CRP.1 (20 April 2015).** (“Requests the Open-ended Working Group at its thirty-sixth meeting in July 2015: 1. To agree to establish a contact group to consider proposals to amend the Montreal Protocol, including those that have been submitted for consideration by the Meeting of the Parties.”).

250 **ISD Reporting Services, Summary of The Workshop on Hydrofluorocarbon Management and the Thirty-Fifth Meeting of The Open-Ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (27 April 2015).** (“On Friday afternoon Co-Chair Paul Krajnik resumed plenary. The EU informed parties that the informal consultation led to an agreement to continue intersessional discussions, in an informal manner, to study the feasibility and ways of managing HFCs, with a view to the establishment of a contact group on feasibility and ways of managing HFCs at OEWG 36. The intersessional discussions are to examine a list of related challenges, including inter alia: energy efficiency; funding requirements; safety of substitutes; availability of technologies; performance and challenges in high-ambient temperatures; capacity building; non-party trade; synergies with the UNFCCC; the relationship to the HCFCs phase-out; ecological effects; implications for human health; social implications; challenges to the production sector; exemptions and ways to address lack of alternatives; and technology transfer.”).

251 All the information on the **Workshop on Hydrofluorocarbon Management** including pre-session documents and presentations can be found on the website of **Montreal Protocol Secretariat**.
Protocol submitted by European Union and its Member States, following up on the Paris climate conference of Pakistan, or capacity of the Parties on the challenges identified in the mandate of the contact group agreed at the resumed meeting of the Parties to the Montreal Protocol: 1

The parties agreed to work together, within the Montreal Protocol, to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons.

The United States and Canada affirmed their commitment to adopt a Montreal Protocol HFC phasedown amendment in 2016, and upon adoption to provide increased financial support to the Protocol’s Multilateral Fund to help developing countries implement a phase-down. The U.S. and Canada will continue to support a range of activities that promote alternatives to high global warming potential HFCs and promote greener technologies, including in those countries facing challenges such as high ambient temperatures.

The U.S. and Canada will propose new actions in 2016.

The White House Office of the Press Secretary, U.S.-China Joint Statement on Climate Change (29 June 2015).

The White House Office of the Press Secretary, U.S.-Brazil Joint Statement on Climate Change (30 June 2015).

UNEP (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1-5 November 2015 Earth Negotiations Bulletin 19(115) ("MOP 27 immediately followed the two-day resumed session of the 36th Open-ended Working Group (OEWG 36), which had agreed on a mandate for a contact group on the feasibility and ways of managing hydrofluorocarbons (HFCs). The contact group was established and HFCs were the “major topic” under debate throughout the week.").

UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) ("To recognize the progress made at the Twenty-Seventh Meeting of the Parties on the challenges identified in the mandate of the contact group agreed at the resumed thirty-sixth meeting of the Open-ended Working Group (listed in annex I to the present decision,) on the feasibility and ways of managing HFCs, including development of a common understanding on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity-building and the need for an exemption for high-ambient-temperature countries, and to endorse the concepts listed in annex II to the present decision."). See also IISD Reporting Services (2015) Summary of the Twenty-Seven Meeting of the Parties to the Montreal Protocol: 1-5 November 2015 Earth Negotiations Bulletin 19(115) ("MOP 27 immediately followed the two-day resumed session of the 36th Open-ended Working Group (OEWG 36), which had agreed on a mandate for a contact group on the feasibility and ways of managing hydrofluorocarbons (HFCs). The contact group was established and HFCs were the “major topic” under debate throughout the week.").

UNEP (2016) Report of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.27/13, 25; see also IISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1-5 November 2015 Earth Negotiations Bulletin 19(115) ("Following protracted negotiations that finally concluded in the early hours of Friday morning, parties agreed to a “roadmap” for negotiating an HFC amendment; this agreement included provision for an additional OEWG meeting and an extraordinary MOP in 2016.").

Media Note, U.S. Department of State, U.S.-Pakistan Strategic Dialogue Joint Statement (1 March 2016) (“The two delegations expressed appreciation for the fact that, by partnering on cleaner energy technologies, the United States and Pakistan are also partnering to curb greenhouse gas emissions. Both countries recognized the importance of following up on the Paris climate commitment, including their Intended Nationally Determined Contributions (INDCs). Further, the two sides reaffirmed their respective countries’ commitments to work together to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons, acknowledging that the impact on Pakistan’s economy and industry would be taken into account. They welcomed the next meeting of the Energy Working Group in March 2016, which will highlight new areas for U.S. clean energy investment in Pakistan and provide strategic direction to the two countries’ energy partnership for the coming years.").

White House Office of the Press Secretary, U.S.-Canada Joint Statement on Climate, Energy, and Arctic Leadership (10 Mar 2016) (“Both Canada and the U.S. affirm their commitment to reduce use and emissions of hydrofluorocarbons (HFCs) using their respective domestic frameworks and will propose new actions in 2016. Canada and the U.S. are both demonstrating leadership by updating their public procurement processes to transition away from high global warming potential HFCs, whenever feasible, through government purchase of more sustainable and greener equipment and products…The U.S. and Canada affirm their commitment to adopt a Montreal Protocol HFC phasedown amendment in 2016, and upon adoption to provide increased financial support to the Protocol’s Multilateral Fund to help developing countries implement a phase-down. The U.S. and Canada will continue to support a range of activities that promote alternatives to high global warming potential HFCs and promote greener technologies, including in those countries facing challenges such as high ambient temperatures.").

White House Office of the Press Secretary, FACT SHEET: United States – Argentina Relationship (23 Mar 2016) (“The United States and Argentina affirm their commitment to adopt an amendment to the Montreal Protocol on hydrofluorocarbons (HFCs) phase down in 2016, building on progress made and within the framework set out in the Dubai Pathway. Both countries...
welcome the common understandings reached in Dubai on financial support to the Multilateral Fund for developing countries to implement an HFC phase-down amendment. We will work together to generate solutions on priority challenges to managing HFCs.”

266 White House Office of the Press Secretary, U.S.-China Joint Presidential Statement on Climate Change (31 Mar 2016) (“The Presidents recognize that the Paris Agreement marks a global commitment to tackling climate change and a strong signal of the need for a swift transition to low-carbon, climate-resilient economies. In this regard, the Presidents are also committed to working bilaterally and with other countries to achieve successful outcomes this year in related multilateral fora, including on an HFC amendment under the Montreal Protocol pursuant to the Dubai Pathway…”).

267 IISD Reporting Services (2016) Summary of the Thirty-Seventh Meeting of the Open-Ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: 4–8 April 2016, Earth Negotiations Bulletin 19(116) (“On Wednesday evening, following discussions, parties presented compromise text. A proponent said that while the issue is broad, the proposal only addresses an exemption for parties with HAT conditions, where suitable alternates do not exist. The proposal… specifies that the exemption will be available at the commencement of the HFC freeze or other initial control obligations with a duration of four years; applies to Article 5 countries with an average of at least two months per year, over 10 consecutive years, with a peak monthly average temperature above 35 degrees Celsius, and formally notified use of this exemption to the Secretariat no later than one year before the HFC freeze or other initial control obligation, and every four years thereafter, should it wish to extend the exemption; calls for any party operating under the HAT exemption to report separately the production and consumption data for the sub-sectors to which a HAT exemption applies… Many lauded this compliance deferral approach as a way to move forward on HFC management, with one expressing “renewed hope” in the spirit of consensus. The proponents clarified that 34 countries would qualify for the HAT exemption. The proponents also said that while the exemption was currently placed within the North American amendment proposal, it is a standalone item and not “locked into” any specific amendment proposal.”).

268 UNEP (2016) Text for consideration by the Parties for inclusion in decisions related to funding under the Dubai Pathway on Hydrofluorocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer, Submission by African States, UNEP/OzL.Pro.WG.1/37/CRP.1 (6 Apr 2016) (“African States envision that a decision or decisions will precede or accompany an HFC amendment to update the financial mechanism to generate solutions to address challenges identified by the Parties under the Dubai Pathway on HFCs. To address challenges facing Article 5 Parties from the perspective of funding the manufacturing and servicing sector, African States submit the following text to be included within any decisions that would provide: Guidance to the Executive Committee of the Multilateral Fund; Modifications to the “general principles” of the indicative list of categories of incremental costs; and Modifications to the indicative list of categories of incremental costs.”).

269 IISD Reporting Services (2016) Summary of the Thirty-Seventh Meeting of the Open-Ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: 4–8 April 2016, Earth Negotiations Bulletin 19(116) (“OEWG 37 Co-Chair Smith suspended the contact group, recommending to resume OEWG 37 prior to OEWG 38, pending budgetary implications. Delegates agreed. The EU, with Kuwait, requested the Secretariat to inform parties of the dates of the resumed session. Noting informal discussion on the need for broader exemptions, Canada presented text, stating: “to address the possibilities or need for exemptions from the HFC phase-down schedule not later than 2030.” Commending the text, Saudi Arabia, with Pakistan, urged for discussion by a contact group, before seeking approval from plenary, as is common practice. The plenary took note of Canada’s remarks. The US suggested parties request the Secretariat to provide an information document comparing the different HFC amendment proposals for review at OEWG 38. Lauding progress, OEWG 37 Co-Chair Smith suspended the meeting at 12:40 am on Saturday, 9 April.”).

270 IISD Reporting Services (2016) Summary of the Thirty-Seventh Meeting of the Open-Ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: 4–8 April 2016, Earth Negotiations Bulletin 19(116) (“The US suggested parties request the Secretariat to provide an information document comparing the different HFC amendment proposals for review at OEWG 38.”).

271 AMCEN Sixth Special Session Cairo Declaration, 2016, African Ministerial Conference on the Environment (AMCEN) (16–19 Apr 2016)

273 White House Office of the Press Secretary, United States-Gulf Cooperation Council Second Summit Leaders Communiqué (21 April 2016, Riyadh, Saudi Arabia) (“Leaders reaffirmed the mutual benefits of cooperation on climate issues, and committed to work toward the adoption of an amendment to the Montreal Protocol in 2016 to phasedown hydrofluorocarbons.”).

274 Chair’s Summary, Meeting of the Major Economies Forum, Twenty-fourth Meeting of the Leaders’ Representatives (23–24 April 2016) (“In the final session, Participants exchanged information and views on two key climate-related efforts in other arenas this year: the effort to adopt an amendment in 2016 to phase down HFCs by Parties to the Montreal Protocol…. Following informative presentations, respectively, by EU Commissioner Miguel Cañete and Mexican Director-General Roberto Dondisch, Participants affirmed the importance of high-level attention to these parallel efforts, including through the MEF, the environmental value that successes in these fora could have, and the importance of continuing the Paris momentum and harnessing it in the service of concrete results. There was broad support for – and confidence in the prospect of – finalizing an HFC amendment in 2016. Participants acknowledged the important role an HFC phasedown would play in climate action, recognizing that the phasedown amendment would provide for various types of flexibility in implementation.”). The Participants of the meeting included the ministers and officials from 16 of the major economies; ministers and officials from the Democratic Republic of the Congo, Mali, Marshall Islands, Morocco, New Zealand, Saudi Arabia, and Singapore; representatives of the UNFCCC Secretariat and UN
Secretary-General’s Office; and was chaired by the Senior Advisor to the U.S. President Brian Deese. The countries of the Major Economies Forum are Australia, Brazil, Canada, China, the European Union, France, Germany, India, Indonesia, Italy, Japan, Korea, Mexico, Russia, South Africa, the United Kingdom, and the United States. Major Economies Forum, About (last visited 19 May 2016).

275 White House Office of the Press Secretary, U.S.-Nordic Leaders’ Summit Joint Statement (13 May 2016) (“The United States and the Nordic countries intend to support enhanced climate action by working together to achieve ambitious outcomes within international fora such as the Montreal Protocol and International Civil Aviation Organization (ICAO). In particular, the United States and Nordic countries affirm their commitment to adopt a Montreal Protocol HFC phasedown amendment in 2016, and intend to provide additional support through the Protocol’s Multilateral Fund following adoption of an amendment for its implementation. The United States and Nordic countries plan to continue to support a range of activities that promote alternatives to hydrofluorocarbons (HFCs) with high global warming potential and to promote greener technologies in all countries.”); see also White House Office of the Press Secretary, FACT SHEET: U.S.-Nordic Collaboration on Climate Change, the Arctic, and Clean Energy (13 May 2016) (“Phasing Down HFCs: The leaders affirmed their commitment to adopt a Montreal Protocol HFC phasedown amendment in 2016 and provide additional support through the Protocol’s Multilateral Fund following adoption of an amendment. Today’s statement is reinforced by actions that the United States is taking to reduce the use and emissions of HFCs. The United States has been working to negotiate a Montreal Protocol HFC phasedown amendment in 2016 and provide additional support through the Protocol’s Multilateral Fund following adoption of an amendment. The United States and India committed to work together to adopt in 2016 an ambitious amendment to phase down HFCs under the Montreal Protocol. The leaders reiterated their commitment to pursue low greenhouse gas emission development strategies in the pre-2020 period and to develop long-term low greenhouse gas emission development strategies. In addition, the two countries resolved to work to adopt an HFC amendment in 2016 with increased financial support from donor countries to the Multilateral Fund to help developing countries with implementation, and an ambitious phasedown schedule, under the Montreal Protocol pursuant to the Dubai Pathway.”); see also White House Office of the Press Secretary, FACT SHEET: The United States and India – Moving Forward Together on Climate Change, Clean Energy, Energy Security, and the Environment (7 June 2016) (“In addition, the two sides plan to work together to adopt in 2016 an ambitious amendment to phase-down the production and consumption of hydrofluorocarbons – a potent greenhouse gas – under the Montreal Protocol, which could avoid a half-degree of temperature increase. By avoiding up to 0.5°C of warming by the end of the century, an HFC Amendment is one of the most consequential actions we can take to implement the goals of the Paris Agreement. Furthermore, the United States and India committed to work together to reach a successful resolution to address greenhouse gas emissions from international civil aviation at the upcoming International Civil Aviation Organization Assembly.”).

276 Communique, “G7 Toyama Environment Ministers’ Meeting Toyama, Japan” (16 May 2016) (“On measures to address fluorocarbons, we welcome the decision in Dubai by the parties to the Montreal Protocol to address HFCs under the Montreal Protocol, and support adoption of a Montreal Protocol HFC phase-down amendment in 2016. We also recognize the importance of implementing concrete measures to minimize emissions throughout the lifecycle of HFCs and 10 other fluorocarbons, including through the management of equipment and appliances that use these substances during their operations and at the time of their disposal.”). See also News Release, Office of the Administrator, “Joint Statement Between The U.S. Environmental Protection Agency and The Ministry of The Environment of Japan on Continued Bilateral Environmental Cooperation” (16 May 2016) (“EPA and MOEJ are also working together on an amendment to phasedown HFCs under the Montreal Protocol to reduce the rapidly growing climate impact of these gases, and determine acceptable baselines and schedules. EPA and MOEJ have decided to work together on knowledge sharing forums on adaptation actions through the Global Adaptation Network (GAN) including Sustained Learning Exchanges and City-to-City Exchanges, cooperating with the Asia-Pacific Adaptation Network (APAN) and other initiatives.”).

277 G7 Ise-Shima Leaders’ Declaration, G7 (26–27 May 2016) (“We also recognize the importance of mitigating emissions of short-lived climate pollutants including black carbon, hydrofluorocarbons (HFCs), and methane to help slow the rate of near-term warming. In particular, we resolve to drive down our methane emissions and further recognize the importance of adopting domestic measures. We welcome the decision in Dubai by the Montreal Protocol parties to work to address HFCs under the Montreal Protocol, and we support adoption of an ambitious Montreal Protocol HFC phase-down amendment in 2016, and intend to provide additional support through the Multilateral Fund following adoption of an amendment for its implementation.”).

278 Clean Energy Ministerial, World’s Energy and Business Leaders Announce Actions to Accelerate Global Deployment of Technologies at Seventh Clean Energy Ministerial (2 June 2016) (“Developing Climate Smart Cooling Technologies: The new Advanced Cooling (AC) Campaign challenges governments and industry to develop and deploy at scale super-efficient, smart, climate friendly and affordable cooling technologies critical for prosperous and healthy societies furthering the goals of the Montreal Protocol. Access to cooling can improve health, productivity, economic growth, and educational outcomes. For example, improving the average efficiency of air conditioners sold in 2030 by 30 percent could reduce emissions by up to 25 billion tons of carbon dioxide (CO2) over the lifetime of the equipment and reduce peak electricity demand by as much as 340–790 gigawatts.”).

279 Joint Statement: The United States and India: Enduring Global Partners in the 21st Century, U.S.-India (7 June 2016) (“The United States and India share common climate and clean energy interests and are close partners in the fight against climate change. …The leaders reiterated their commitment to pursue low greenhouse gas emission development strategies in the pre-2020 period and to develop long-term low greenhouse gas emission development strategies. In addition, the two countries resolved to work to adopt an HFC amendment in 2016 with increased financial support from donor countries to the Multilateral Fund to help developing countries with implementation, and an ambitious phasedown schedule, under the Montreal Protocol pursuant to the Dubai Pathway.”); see also White House Office of the Press Secretary, FACT SHEET: The United States and India – Moving Forward Together on Climate Change, Clean Energy, Energy Security, and the Environment (7 June 2016) (“In addition, the two sides plan to work together to adopt in 2016 an ambitious amendment to phase-down the production and consumption of hydrofluorocarbons – a potent greenhouse gas – under the Montreal Protocol, which could avoid a half-degree of temperature increase. By avoiding up to 0.5°C of warming by the end of the century, an HFC Amendment is one of the most consequential actions we can take to implement the goals of the Paris Agreement. Furthermore, the United States and India committed to work together to reach a successful resolution to address greenhouse gas emissions from international civil aviation at the upcoming International Civil Aviation Organization Assembly.”).

280 Leaders’ Statement on a North American Climate, Clean Energy, and Environment Partnership, U.S., Canada, & Mexico (29 June 2016) (“Canada, the U.S., and Mexico affirm our commitment to adopt an ambitious and comprehensive Montreal Protocol hydrofluorocarbons (HFCs) phase-down amendment in 2016, and to reduce use of HFCs, including through domestic actions. We call on all nations to support this goal.”).
We recognize that energy efficiency, including energy conservation, is a long-term priority for G20. Improving energy efficiency brings social, economic, environmental and other benefits, and plays a key role in shaping a sustainable future. … We adopt the G20 Energy Efficiency Leading Programme (EELP), and agree to take the lead in promoting energy efficiency. We agree to take action by adhering to the Voluntary Pillars for Energy Efficiency Cooperation, which are "mutually beneficial, innovative, inclusive, and sharing". We commit to significantly improve energy efficiency in the G20, through greater energy efficiency cooperation and by encouraging G20 members to develop active energy efficiency programs, policies and measures based on the specific needs and national circumstances of each member. …We encourage interested countries to strengthen this collaboration and to participate actively in the additional key areas outlined in the EELP, which are Best Available Technologies and Practices ('TOP TENs'), Super-efficient Equipment and Appliances Deployment initiative ('SEAD'), District Energy Systems ('DES'), Energy Efficiency Knowledge Sharing Framework, and Energy End-Use Data and Energy Efficiency Metrics. We welcome the active participation of non-G20 countries in all key areas of energy efficiency collaboration."