The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points

Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency

Background Note

DRAFT: 5 August 2021

Institute for Governance & Sustainable Development (IGSD)

Center for Human Rights and Environment (CHRE/CEDHA)
About the Institute for Governance & Sustainable Development (IGSD)

IGSD’s mission is to promote just and sustainable societies and to protect the environment by advancing the understanding, development, and implementation of effective and accountable systems of governance for sustainable development.

As part of its work, IGSD is pursuing “fast-action” climate mitigation strategies that will result in significant reductions of climate emissions to limit temperature increase and other climate impacts in the near-term. The focus is on strategies to reduce non-CO2 climate pollutants, protect sinks, and enhance urban albedo with smart surfaces, as a complement to cuts in CO2. It is essential to reduce both non-CO2 pollutants and CO2, as neither alone is sufficient to provide a safe climate.

IGSD’s fast-action strategies include reducing emissions of the short-lived climate pollutants—black carbon, methane, tropospheric ozone, and hydrofluorocarbons (HFCs). Reducing HFCs starting with the Kigali Amendment to the Montreal Protocol has the potential to avoid up to 0.5 °C of warming by end of century. Parallel efforts to enhance energy efficiency of air conditioners and other cooling appliances during the phase down of HFCs can double the climate benefits at 2050, and by 2060 avoid the equivalent of up to 460 billion tonnes of CO2.

About the Center for Human Rights and Environment (CHRE/CEDHA)

Originally founded in 1999 in Argentina, the Center for Human Rights and Environment (CHRE or CEDHA by its Spanish acronym) aims to build a more harmonious relationship between the environment and people. Its work centers on promoting greater access to justice and to guarantee human rights for victims of environmental degradation, or due to the non-sustainable management of natural resources, and to prevent future violations. To this end, CHRE fosters the creation of public policy that promotes inclusive socially and environmentally sustainable development, through community participation, public interest litigation, strengthening democratic institutions, and the capacity building of key actors.

CHRE addresses environmental policy and human rights impacts in the context of climate change through numerous advocacy programs including initiatives to promote fast action climate mitigation policies to contain and reverse climate change, to reduce the emission of short-lived climate pollutants such as black carbon, HFCs and methane, to protect glaciers and permafrost environments for their value as natural water storage and basin regulators, due to their melt impacts on sea level and its influence on ocean currents and air streams, as well as for their global albedo value and for the many other roles glaciers play in sustaining planetary ecological equilibrium. CHRE also fosters corporate accountability and human rights compliance to address the social and environmental impacts of key climate polluting industries such as oil and gas (including hydraulic fracturing), mining, paper pulp mills and artisanal brick production.
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points

Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency

Updated: 5 August 2021

Table of Contents

1. Introduction and summary .. 1
2. Feedbacks and tipping points are key to understanding planetary emergency 2
3. Shrinking Arctic shield ... 3
4. Permafrost emissions of CO₂, CH₄, and N₂O ... 6
5. Methane from Arctic Shelf ... 8
6. Increasing melt rate of Greenland Ice Sheet and destabilization of West Antarctic Ice Sheet .. 8
7. Persistence of ocean warming ... 8
8. Limited role of CO₂ mitigation for near-term cooling .. 9
9. Maximum role for mitigating short-lived super climate pollutants 9
 Methane (CH₄) .. 10
 Black carbon and tropospheric ozone (O₃) ... 13
 Hydrofluorocarbons (HFCs) .. 14
 Nitrous oxide (N₂O) .. 14
10. Strategies for protecting the Arctic and for removing non-CO₂ climate pollutants. 14
11. Importance of protecting forests and other sinks .. 15
12. Conclusion .. 16

References .. 17

List of Figures

Figure 1: Projected warming ...1
Figure 2: Climate tipping points .. 3
Figure 3: Monthly sea ice extent anomalies ...5
Figure 4: Late winter sea ice in the Arctic ...6
Figure 5: Changes in permafrost ...7
Figure 6: Climate temperature response to reductions in emissions of CO₂, SLCPs, or both9
Figure 7: Methane reductions compared to global mean surface temperature responses to changes in fossil-fuel-related emissions ..11
1. Introduction and summary

This Background Note summarizes the science supporting the need for fast near-term climate mitigation. It also describes the importance of cutting short-lived climate pollutants and protecting sinks in order to slow self-reinforcing feedbacks and avoid tipping points, and explains why winning a fast mitigation sprint to 2030 is critical for addressing the climate emergency.

- Along the way to achieving the 2050 Net Zero target—or better, a Real Zero target—it is critical to select a pathway that not only reduces CO₂ but that also reduces the short-lived climate pollutants (SLCPs)—black carbon (BC), methane (CH₄), tropospheric ozone (O₃), and hydrofluorocarbon (HFC) refrigerants—as fast as possible, along with other fast mitigation strategies, including protection of sinks; this is essential for achieving near-term and long-term climate targets, including the 2050 Net Zero target. (SLCPs are often referred to as “super pollutants” because of their potency.)
- Speed must become a key goal for selecting climate solutions,¹ in order to provide the most avoided warming in the shortest period of time over the next decade or two, to slow the self-reinforcing feedbacks and avoid tipping points,² and to protect the most vulnerable people and ecosystems.³
- The window for effective mitigation to slow feedbacks and avoid tipping points is shrinking to perhaps 10 years or less,⁴ including the window to prevent crashing through the 1.5 °C guardrail.⁵

Figure 1: Projected warming

Source: Xu Y., Ramanathan V., & Victor D. (2018) Global warming will happen faster than we think, Comment, NATURE, 564:30–32.

- The world could hit the 1.5 °C guardrail by 2030, due to rising emissions, declining particulate air pollution that unmasks existing warming, and natural climate variability.⁶
- The probability of exceeding 1.5 °C by 2025, at least temporarily, has nearly doubled since 2020, with a likely-as-not (44%) chance that at least one year could be 1.5 °C warmer, according to the World Meteorological Organization.
- The Earth is trapping twice as much heat as it did in 2005, with loss of reflective sea ice and changes in clouds contributing significantly to the extra heat the planet is now retaining.
 - Climate-driven changes in clouds act as a self-reinforcing feedback leading to more warming and higher climate sensitivity.
- Weather extremes are becoming more frequent and more severe.
 - The record-breaking June 2021 heatwave in the Pacific Northwest (U.S. and Canada) was virtually impossible absent human-caused climate change, and would have been much less severe to human health. The probability of such heat waves will increase by up to 200 times by the 2040s, occurring every 5 to 10 years, given our current emissions trajectory.
 - Global warming made the 2019 heatwaves in Western Europe up to 100 times more likely. As Europe sizzles under another heatwave in 2021, the Mediterranean region is evolving into a “wildfire hotspot.”
- The probability of “record-shattering” climate extremes “depends on warming rate, rather than the global warming level, and is thus pathway-dependent.”
 - “The seven warmest years since 1880 have all occurred since 2014, while the 10 warmest years have occurred since 2005.” Continued record greenhouse gas emissions mean that the rate of warming could increase from 0.2 °C per decade to 0.25–0.32 °C per decade over the next 25 years.
 - Greenhouse gas concentrations in the atmosphere continue to increase at record rates despite the pandemic and economic slowdown.
 - Methane levels in 2020 grew at the fastest rate since records began, adding 14.7 parts per billion (ppb) to reach a record 1892.3 ppb in December 2020.
 - Global atmospheric CO₂ concentrations reached a new high of 419 parts per million (ppm) in May 2021, a 50% increase over pre-industrial levels and 2.5 ppm higher than 2020. For comparison, the average increase of CO₂ was 1.5 ppm/year in the 1990s.
 - The three strategies that together are essential for keeping the planet liveable are: (i) reducing CO₂ by 45% by 2030, (ii) reducing short-lived super climate pollutants (SLCPs or super climate pollutants) by 35% or more, and (iii) removing up to 1,000 billion tons of CO₂ from the atmosphere by 2100, according to the IPCC’s Special Report on 1.5 °C.
 - Of these three strategies, cutting the SLCPs can avoid three times more warming at 2050 than CO₂ cuts can, reducing projected warming in the Arctic by two-thirds and the rate of global warming by half.

2. Feedbacks and tipping points are key to understanding planetary emergency

Evidence from feedbacks and tipping points suggests that we are already in a state of planetary emergency, where both the risk and urgency of the emergency are acute. Six tipping points are projected to occur between the current 1 °C of warming and the 1.5 °C of warming expected in the next 10 years, with another
eleven tipping points projected between 1.5 °C and 2 °C. Domino-like interactions among these systems are projected to lower thresholds and increase the risk of triggering a global cascade of tipping points.

- Self-reinforcing feedbacks, including the loss of Arctic sea ice, are among the most vulnerable links in the chain of climate protection.

Figure 27: Climate tipping points

3. Shrinking Arctic shield

Over the past several decades, the Arctic air temperature has been warming at three times the global average, and up to four times the global average for the area above 70°N, with even greater warming over the Arctic ocean. As a result, the extent of Arctic sea ice—a white shield reflecting incoming solar radiating safely back to space—is shrinking.

- Arctic sea ice is decling at an accelerating rate.
 - From 1994 to 2017, the Arctic lost 7.6 trillion tons of sea ice, contributing to over a quarter of global ice loss in that period.
 - “The rate of [global] ice loss has risen by 57% since the 1990s – from 0.8 to 1.2 trillion tonnes per year…. Even though Earth's cryosphere has absorbed only a small fraction of the global energy imbalance [3.2 ± 0.3%] it has lost a staggering 28 trillion tonnes of ice between 1994 and 2017…. [T]here can be little doubt that the vast majority of Earth's ice loss is a direct consequence of climate warming.”

• The rate of decline in Arctic sea ice thickness from 2002 to 2018 may be underestimated by 60-100% in four of the seven marginal seas, according to a recent study using “snow data with more realistic variability and trends.”

• “The Arctic is rapidly warming and experiencing tremendous changes in sea ice…”

• Arctic heatwaves have become as likely, if not more, as heat waves near the equator.

• Arctic mean surface temperatures may rise by up to 10 °C by the end of the century above the 1985–2014 average.

• Already in 2020, Siberia experienced heat extremes that would have been “almost impossible” without human-caused global warming, including the first 100 °F temperature recorded north of the Arctic Circle, with similar extremes being observed in the first half of 2021.

• The 14 Septembers with the least Arctic sea ice extent have all been in the last 14 years; on September 15, 2020, the Arctic sea ice reached its annual minimum as the second lowest extent in the satellite record.

• Through late October 2020, the Arctic sea ice had not yet begun freezing in the Laptev Sea, an area known as the “birthplace of ice” for the Arctic Ocean.

• The Arctic’s “Last Ice Area,” the Wandel Sea, saw unprecedented sea ice loss in August 2020 primarily due to abnormal weather patterns and warmth from the exposed ocean surfaces. Summer sea ice in this area north of Greenland was thought to be more resilient and that it would persist decades longer than rest of the Arctic, providing a refuge for the region’s ice-dependent flora and fauna.

• Reduced Arctic snow cover is increasing risk of wildfires, which emit black carbon, another super climate pollutant, while destroying sinks and emitting CO₂; wildfires and permafrost thawing can “act together to expose and transfer permafrost C to the atmosphere very rapidly.”

• The Arctic could become nearly ice-free in September within a decade, further reducing its heat-reflecting ability.

• Most of the arctic sea ice might become thin (less than 0.5m) during September as early as 2025, or possibly earlier given underestimates of current rates of thinning.

• Conditions free of sea ice over multiple summer months likely occurred during the last interglacial period, providing further independent support for predictions of ice-free conditions in late summer by 2035.

• Arctic summer sea ice in the seas surrounding the central Arctic Ocean—the “shelf seas”—will likely vanish during the late summer shortly after mid-century, with the Barents Sea and Greenland Sea ice-free year-round by the end of the century under high emissions scenarios.
In the extreme case when all Arctic sea ice is lost for the sunlit months, climate forcing equivalent to one trillion tons of CO₂ would be added to the climate system—on top of the forcing from the 2.4 trillion tons of CO₂ added in the 270 years since the Industrial Revolution—, advancing warming by 25 years. This additional warming would be the equivalent of adding 56 ppm of CO₂ to the current CO₂ concentration, which reached a seasonal peak of 419 ppm in May 2021. The added forcing in the Arctic would be 21 W/m²; averaged globally this would equal 0.71 W/m² of global forcing, compared to the 1.83 W/m² added by anthropogenic emissions of CO₂ since the Industrial Revolution.

If all of the cloud cover over the Arctic dissipates along with the loss of all sea ice, the added Arctic warming could be three times as much—the equivalent of three trillion tons of CO₂; in contrast, even if clouds increase to create completely overcast skies over the Arctic, the warming would still add the equivalent of 500 billion tons of CO₂ to the atmosphere.

Further jeopardizing the future of summer sea ice is the loss of the strong, very old (>4 years old) multi-year Arctic sea ice, which comprised only 4.4% of the Arctic Ocean in March 2020; young, first-year ice—which is thinner, more fragile, and more susceptible to decline—now comprises most of the ice pack. Less sea ice in the Arctic Ocean allows ocean waves to grow larger, allowing for an acceleration of ice breakup and retreat. Arctic warming also leads to a greater number of cyclones and to more intense cyclones, which contribute to Arctic sea ice decline and vice-versa.
Declining Arctic sea ice has created an environment where more of the warmer Atlantic Ocean water enters the Arctic Ocean, which can further reduce sea ice thickness.62

Figure 79: Late winter sea ice in the Arctic

Warmer oceans are also accelerating sea ice loss, with warmer Pacific waters transporting “unprecedented quantities of heat” into the Arctic Ocean.63

4. **Permafrost emissions of CO₂, CH₄, and N₂O**

The accelerated Arctic warming risks triggering another self-reinforcing feedback—permafrost thaw,64—which would further amplify warming by releasing CO₂ and methane (CH₄),65 as well as nitrous oxide (N₂O), which also destroys stratospheric ozone.66

- The amount of carbon stored in permafrost is nearly twice what is already in the atmosphere—1,700 Gt carbon in permafrost versus 850 Gt carbon in the atmosphere.67
 - Of the approximately 15 million square kilometers of permafrost on land,68 3.4 million square kilometers have already thawed; and with warming of 1.5 °C approaching, another 4.8 million square kilometers could thaw gradually.69
Under the no-mitigation RCP8.5 scenario, gradual permafrost thaw alone could release as much CO₂ as the remaining carbon budget for a likely chance of remaining below 1.5 °C by the end of the century. However, abrupt thaw “will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon,” and “models considering only gradual permafrost thaw are substantially underestimating carbon emissions” by 40%. Moreover, thawing subsea permafrost beneath the Arctic Ocean could add 20% more emissions by 2100 under an RCP8.5 scenario according to expert judgement. Carbon budgets for pathways targeting 1.5 or 2 °C this century underestimate potential permafrost feedbacks, where a 0.5 °C overshoot could result in a two-fold increase in emissions from permafrost thaw. In addition to accelerating permafrost thaw, heatwaves in the Siberian Arctic in 2020 that peaked at 6 °C above normal temperatures may also be causing fossil methane gas to leak from rock formations.

![Figure 94: Changes in permafrost](image)

Source: Chadburn S. E., Burke E. J., Cox P. M., Friedlingstein P., Hugelius G., & Westermann S. (2017) An observation-based constraint on permafrost loss as a function of global warming, Nat. Clim. Change 7(5):340–344 (“Figure 4 | Changes in spatial patterns of permafrost under future stabilization scenarios. a,b, The shaded areas show estimated historical permafrost distribution (1960–1990), and contours show the plausible range of zonal boundaries under 1.5 C stabilization (a) and under 2 C stabilization (b).”).

In addition to the permafrost feedback that accelerates warming, losing permafrost impacts human settlements and health:

- 3.3 million people, 42% of settlements, and 70% of current infrastructure in the permafrost domain is at risk of severe damage due to permafrost thaw by 2050, including 45% of oil and gas production fields in the Russian Arctic.
Damage to Russian infrastructure alone due to permafrost thaw could cost $69 billion by 2050.

5. Methane from Arctic Shelf

There also is a risk that methane will be emitted from the shallow seabed of the East Siberian Arctic Shelf as the Arctic ocean warms, which would speed up other global warming impacts.

- Measurements in October 2020 by an international expedition on board a Russian research vessel are showing elevated methane release from the Arctic Shelf, according to a story by Jonathan Watts in The Guardian, 'Sleeping giant' Arctic methane deposits starting to release, scientists find (27 October 2020). The story quotes Swedish scientist Örjan Gustafsson of Stockholm University, stating that the “East Siberian slope methane hydrate system has been perturbed and the process will be ongoing.” Analysis of elevated methane measured in the area in 2014 suggest a fossil methane source beneath the seabed that “may be more eruptive in nature.”
- According to an earlier isotopic analysis of methane from an Antarctic ice core record, up to 27% of methane emissions during the last deglaciation may have come from old carbon reservoirs of permafrost and hydrates; while this “serves only as a partial analog to current anthropogenic warming,” the authors stated that it is “unlikely” that today’s anthropogenic warming will release the carbon in these old reservoirs.

6. Increasing melt rate of Greenland Ice Sheet and destabilization of West Antarctic Ice Sheet

A series of tipping points and feedbacks exist between 1.5 °C and 2 °C, as confirmed by two of the most recent IPCC Special Reports from October 2018 and September 2019.

- Currently, the best estimate of the threshold for irreversible melting of the Greenland Ice Sheet is around 1.6 °C (0.8–3.2 °C); and while it may take several millennia to see the full extent of the sea-level rise—which would contribute 5–7 meters if all of Greenland melted—the “timescale of melt depends strongly on the magnitude and duration of the temperature overshoot.”
 - In the past two decades, the melt rate across Greenland increased 250–575% and the ice discharge from the Greenland Ice Sheet substantially increased; this will likely persist in the coming years.
- Melting of the Greenland Ice Sheet and parts of Antarctica have tipping points around the 1.5–2.0 °C threshold that, once triggered, are irreversible even with carbon dioxide removal strategies.
 - “Greenland and Antarctica recently showed new year-to-date alltime record low levels of ice mass.” On July 28, 2021, Greenland experienced a massive melt event that alone would be enough to cover the state of Florida by two inches of water.
- The “evidence from tipping points alone suggests that we are in a state of planetary emergency: both the risk and urgency of the situation are acute…”

7. Persistence of ocean warming

Compounding the risk from self-reinforcing feedbacks and tipping points, warming will continue well after emissions stop; about 93% of the energy imbalance accumulates in the oceans as increased heat, and this will return to the atmosphere on a timescale of decades to centuries after emissions stop.
8. Limited role of CO\textsubscript{2} mitigation for near-term cooling

Cutting CO\textsubscript{2} emissions by shifting from fossil fuels to clean energy is essential to do as fast as possible, but doing so will reduce co-emitted cooling aerosols along with CO\textsubscript{2}, offsetting climate benefits and even producing initial warming over the first decade or more.93

- These reflective particles are emitted during combustion of fossil fuels and currently “mask” warming of about 0.51 °C; and while the accumulated CO\textsubscript{2} in the atmosphere will continue to cause warming for decades to centuries, the cooling aerosols will fall out of the atmosphere within days to months un-masking more of the existing warming.94
- Fast cuts to CO\textsubscript{2} could avoid 0.1 °C of warming by 2050 and up to 1.6 °C by 2100,95 not accounting for warming due to the unmasking.96
 - This would require CO\textsubscript{2} emissions to peak in 2030 and decline by 5.5% per year until carbon neutrality is reached around 2060–2070, after which emissions level off.97
 - If CO\textsubscript{2} emissions were to peak in 2020 (this year) and decline at 5.5% per year until carbon neutrality is reached around mid-century then level off, this extreme scenario could avoid 0.3 °C of warming by 2050 and up to 1.9 °C by 2100, although unmasking of the cooling aerosol would still lead to net warming in the near term.98
 - A separate study found near-term warming within the next two decades of 0.02–0.10 °C due to cuts to fossil fuel CO\textsubscript{2} emissions and associated reductions in cooling aerosols.99

\textbf{Figure 102: Climate temperature response to reductions in emissions of CO\textsubscript{2}, SLCPs, or both}

![Climate temperature response to reductions in emissions of CO\textsubscript{2}, SLCPs, or both](image_url)

9. Maximum role for mitigating short-lived super climate pollutants

Aggressive mitigation of short-lived climate pollutants (SLCPs)—methane, tropospheric ozone, black carbon, and hydrofluorocarbons (HFCs)—is critical for near-term and long-term climate protection. These SLCPs also are known as “super climate pollutants.”
• Cutting SLCPs is the only plausible way to limit warming due to unmasking of cooling aerosols over the next 20 years.100

 \begin{itemize}
 \item “In fact, given that the net effect of the fossil-fuel phase-out on temperature is minimal during the first 20 years (Fig. 3), reducing those other [non-fossil] emissions is the only plausible way in which to decrease warming during that period.”101
 \end{itemize}

• In contrast to the limited amount of warming reduced at 2050 by cutting CO\textsubscript{2}, fast cuts to SLCPs could avoid up to 0.6 °C of warming by 2050, and up to 1.2 °C by 2100,102 which would reduce projected warming in the Arctic by two-thirds and the rate of global warming by half.103

 \begin{itemize}
 \item The IPCC’s Special Report on Global Warming of 1.5 °C concludes that cutting SLCPs is essential for staying below 1.5 °C.104
 \item Similarly, the warning of the climate emergency issued in November 2019 from 11,000 scientists also emphasizes the importance of cutting SLCPs:
 \begin{quote}
 “We need to promptly reduce the emissions of short-lived climate pollutants, including methane (figure 2b), black carbon (soot), and hydrofluorocarbons (HFCs). Doing this could slow climate feedback loops and potentially reduce the short-term warming trend by more than 50% over the next few decades while saving millions of lives and increasing crop yields due to reduced air pollution (Shindell et al. 2017). The 2016 Kigali amendment to phase down HFCs is welcomed.”105
 \end{quote}
 \item In their 2021 update, the scientists stress the urgency of “massive-scale climate action” due to growing severity of impacts and risks from “the many reinforcing feedback loops and potential tipping points” and call for “immediate and drastic reductions in dangerous short-lived greenhouse gases, especially methane.”106
 \end{itemize}

Methane (CH\textsubscript{4})

• Cutting methane emissions is the biggest and fastest strategy for slowing warming and keeping 1.5 °C within reach.107 A Global Methane Assessment from the CCAC and UNEP led by Dr. Drew Shindell concludes that available mitigation measures could reduce human-caused methane emissions by 45% by 2030 and avoid nearly 0.3 °C warming by the 2040s.108

 \begin{itemize}
 \item This would prevent 255,000 premature deaths, 775,000 asthma-related hospital visits, 73 billion hours of lost labour from extreme heat, and 26 million tonnes of crop losses globally (annual value beginning in 2030). Each tonne of methane reduced generates US$4300 in health, productivity, and other benefits.109 In addition, methane mitigation strategies provide further cost reductions and efficiency gains in the private sector, create jobs, and stimulate technological innovation.
 \item Roughly 60% of available targeted measures have low mitigation costs (defined as less than US$21 per tonne of CO\textsubscript{2}e for GWP\textsubscript{100} and US$7 per tonne of CO\textsubscript{2}e for GWP\textsubscript{20}), and just over 50% of those have negative costs.
 \item The greatest potential for mitigation is in the oil and gas sector, where the mitigation potential is 812–1,596 Mt/yr of CO\textsubscript{2}e for GWP\textsubscript{100} in 2030; using GWP\textsubscript{20}, the mitigation is 2,436–4,788 Mt/yr of CO\textsubscript{2}e.
 \item The waste sector can provide mitigation of 812–1,008 Mt/yr of CO\textsubscript{2}e for GWP\textsubscript{100} in 2030; using GWP\textsubscript{20}, the mitigation is 2,436–3,024 Mt/yr of CO\textsubscript{2}e.
 \item The agriculture sector can provide mitigation of 840 Mt/yr of CO\textsubscript{2}e for GWP\textsubscript{100} in 2030; using GWP\textsubscript{20}, the mitigation is 2,520 Mt/yr of CO\textsubscript{2}e.
 \item The coal sector can provide mitigation of 336–700 Mt/yr of CO\textsubscript{2}e for GWP\textsubscript{100} in 2030; using GWP\textsubscript{20}, the mitigation is 1,008–2,100 Mt/yr of CO\textsubscript{2}e.
 \end{itemize}
• As the *Global Methane Assessment* notes, “any action taken to reduce emissions will have an immediate pay off for climate in addition to the current and near-future human health and agricultural production. … Indeed, the expectation that a reduction in emissions will yield quick results, in the order of a decade, is confirmed and emphasizes the importance of methane.”

• Fast action to pursue all available methane mitigation measures now could slow the global rate of warming by 30% by mid-century. This is consistent with the 2011 UNEP/WMO Integrated Assessment that showed that fully implementing measures targeting methane and black carbon could halve the rate of global warming and reduce Arctic warming by two-thirds.

 ○ Strategies to cut methane emissions have 60% more avoided warming in the Arctic than the global average, with the potential to avoid 0.5 °C by 2050.

Figure 7: Methane reductions compared to global mean surface temperature responses to changes in fossil-fuel-related emissions

• Methane is increasingly being addressed under local and national laws, as well as under voluntary programs. Measures specifically targeting methane are needed, as broader decarbonization measures can only achieve 30% of the needed reductions.

 ○ California’s target is to reduce methane emissions by 40% by 2030.

 ○ The U.S. Climate Alliance aims to reduce methane emissions across all sectors by 40–50% by 2030, which includes reducing emissions from the energy sector by 40–45% by 2025, from the waste sector by 40–50% by 2030, and from the agricultural sector where emissions can be reduced 30% from enteric fermentation and up to 70% from manure management by 2030.

 ○ In the North America Climate, Clean Energy, and Environment Partnership signed in 2016, the United States, Canada, and Mexico agreed to reduce methane emissions from the oil and gas sector by 40-45% by 2025 and committed to develop and implement federal
regulations to reduce emissions from existing new sources in the oil and gas sector as well as to develop and implement national methane reduction strategies for key sectors, including oil and gas, agriculture, and waste and food management as soon as possible.122

- The current European Union climate target is to reduce all greenhouse gas emissions by 40\% compared to 1990 levels by 2030, with a proposal to increase this target to 55\%.123 This will require 35–37\% methane emission reductions by 2030 compared to 2005 levels.124 The EU plans to review all relevant environmental and climate legislation bearing on methane emissions, including the Effort Sharing Regulation which sets out binding anthropogenic methane reductions for Member States,125 and the National Emissions Reduction Commitments Directive.126

 - According to a report commissioned by the European Union on global trends in methane emissions, “[r]elative to the year 2010, the most stringent emission scenarios (i.e. MTFR or a 2° scenario) lead to a CO\textsubscript{2}e emission reduction of 2.4 to 3.7 Gt annually in 2030 and 2.9 to 5.1 Gt in 2050…,” and this would close 15–33\% of the emission gap identified in the 2017 UNEP Emissions Gap Report.127

 - The CCAC calculates for the oil and gas sector that “Absolute reduction target of at least 45\% reduction in methane emissions by 2025 and 60\% to 75\% by 2030…are realistic and achievable targets …”128

 - The Clean Air Task Force states that available technology can reduce oil and gas methane emissions by 75\%; additionally, 50\% of all sector methane emissions reduction are possible at no net cost.129

- President Biden’s budget request to Congress includes $480 million for Department of Interior and $100 million for Department of Agriculture initiatives to remediate orphan wells and abandoned mines, tripling the current annual discretionary funding to remediate thousands of abandoned oil and gas wells and reclaim abandoned mines. This investment includes: $165 million for DOI’s Abandoned Mine Land and Economic Revitalization program; and $169 million in a new Energy Community Revitalization Program, which will help accelerate this remediation and reclamation work on DOI lands and support work on non-Federal lands through grants to States and Tribes.

- The President’s budget also includes $485 million to support other multilateral climate initiatives (including $300 million for the Clean Technology Fund, $100 million for multilateral adaptation funds, and $82 million to the Montreal Protocol Multilateral Fund), and we expect some of this to support the Global Methane Initiative.130

- Specific measures to reduce methane emissions include:

 - Strengthening methane mitigation policies by implementing readily available technologies, laws, and governance structures to their fullest and considering ways to expand methane mitigation through other available avenues.131

 - Addressing leaks132 and reducing venting133 in the oil and gas sector. The Clean Air Task Force states that prohibiting venting of natural gas can reduce emission by 95\%.134

 - Eliminating flaring from oil and gas operations, while shifting to clean energy.135

 - Improving feeding and manure management on farms. In the U.S., this could cut emissions from manure by as much as 70\% and emissions from enteric fermentation by 30\%.136

 - Upgrading solid waste and wastewater treatment.137

 - Reducing food waste, diverting organic waste from landfills, and improving landfill management, which could reduce landfill emissions in the U.S. by 50\% by 2030.138

- In addition, a global methane agreement has been suggested,139 as has an Arctic methane agreement.140
Black carbon and tropospheric ozone (O_3)

- Black carbon and tropospheric ozone are local air pollutants and typically addressed under national or regional air pollution laws, as well as through the voluntary programs of the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC).
 - Cutting black carbon and tropospheric ozone can save up to 2.4 million lives every year, and increase annual crop production by more than 50 million tons, worth US$4-33 billion a year, as calculated in 2011.
 - California has cut black carbon emissions by 90% under its air pollution laws and provides a model for other jurisdictions.

- The Arctic is nearly five times more sensitive to black carbon emitted in the Arctic region than from similar emissions in the mid-latitudes. In the Arctic, black carbon not only warms the atmosphere but also facilitates additional warming by darkening the snow and ice and reducing albedo, or reflectivity, allowing the darker surface to absorb extra solar radiation and cause further melting.
 - Heavy-Fuel Oil (HFO) used in shipping is a significant source of black carbon, and the International Maritime Organization (IMO) has drafted a proposal to ban it in the Arctic beginning in July 2024 for some ships, with waivers and exemptions for others until July 2029. (HFO has been banned in the Antarctic since 2011.)
 - If the HFO ban had been in effect in the Arctic in 2019, as currently drafted, it would have banned only 16% of HFO used in the Arctic, and reduced only 5% of the black carbon.
 - However, if the Arctic ban were imposed without the waivers or exemptions, black carbon emissions could have been reduced by 30%.
 - In 2019, Arctic Council countries set a collective target of reducing black carbon emissions by 25–33% by 2025 compared to 2013 levels. Adopting best available techniques could halve black carbon emissions by 2025 and surpass the current goal. These reductions would improve air quality by reducing exposure of fine particle concentrations from 18 million to 1 million people by 2050 and avoid 40% of air pollution-related deaths in Arctic Council countries by mid-century.
 - Banning investments in oil and gas development in the Arctic can help to further protect the region. All the major U.S. banks—Bank of America, Goldman Sachs, JP Morgan Chase, Wells Fargo, Citi, and Morgan Stanley—have committed not to fund oil and gas exploration in the Arctic. In January 2021, sales of Arctic drilling leases were at an all-time low, mostly due to the public commitments made by major banks. Insurance companies are also starting to commit to banning coverage of Arctic oil projects, including AXA, Swiss RE, and Zurich Insurance.

- It is possible to reduce 70% of global black carbon emissions by 2030, including by implementing the following measures:
 - Reducing on-road and off-road diesel emissions by mandating diesel particulate filters while eliminating diesel and other high-emitting vehicles and shifting to clean forms of transportation.
 - Eliminating flaring, while shifting to clean energy.
 - Switching to clean cooking and heating methods.
 - Banning heavy fuel oil in the Arctic and establishing black carbon emission standards for vessels by amending Annex VI of the International Convention for the Prevention of Pollution from Ships (MARPOL).
Ensuring fast ratification of the Gothenburg Protocol and the 2012 amendment that includes controls for black carbon.161

Hydrofluorocarbons (HFCs)

- HFCs are now being phased down under the Montreal Protocol’s Kigali Amendment, with the potential to avoid up to 0.5 °C of warming by 2100.162
 - The initial phasedown schedule of the Kigali Amendment avoids about 90% of the potential, or up to 0.44 °C.
 - More mitigation is available from a faster phasedown schedule, from collecting and destroying HFCs at end of product life, recycling and destroying HFC “banks” embedded in products and equipment, early replacement of older inefficient cooling equipment using HFC refrigerants, and reducing refrigerant leaks through better design, manufacturing, and servicing.163
 - The Kigali Amendment also requires Parties to destroy HFC-23, a by-product of the production of HCFC-22, to the extent practicable, and this will provide additional mitigation not included in the 0.5 °C calculation.164
 - Improving energy efficiency of cooling equipment during the HFC phasedown can more than double the climate benefits in CO2e by reducing emissions from the power plants that provide the electricity to run the equipment.165

Nitrous oxide (N2O)

- While not an SLCP, long-lived nitrous oxide (N2O) is the most significant anthropogenic ozone depleting greenhouse gas not yet controlled by the Montreal Protocol.166 Through mandatory control measures, the Montreal Protocol could spur adoption of technologies to reduce N2O emissions, which are contributing the equivalent of about 10% of today’s CO2 warming.167
 - Controlling nitrous oxide (N2O) emissions could provide climate mitigation of about 1.67 GtCO2e GWP100 by 2050 with 0.94 GtCO2e from agriculture and about 0.6 GtCO2e from industry in 2050.168 In the industrial sector, abatement technology has been available and utilized by manufacturers in developed countries since the 1990s.169 Moreover, only five countries produce 86% of industrial N2O: China, the United States, Singapore, Egypt, and Russia.170
 - In the agriculture sector, several solutions have been found to be cost-effective in reducing N2O emissions from agricultural processes: precision farming using variable rate technology (VRT) and nitrogen inhibitors that suppress the microbial activity that produces N2O. Studies have found that VRT can increase yields by 1–10%, while reducing 4%–37% of nitrogen fertilization.171 Another solution, the SOP product line172, stimulates nitrogen-uptake in crops and inhibits GHG emissions from manure.173

10. **Strategies for protecting the Arctic and for removing non-CO2 climate pollutants**

Specific opportunities to protect the vulnerable Arctic include working with Russia, the Arctic Council chair for 2021–2023, to focus on enhanced monitoring of natural and anthropogenic methane emissions and on reducing methane emissions in the region. Russia has identified environmental protection and climate change as a priority area, taking note of permafrost degradation and methane hydrates.174 Specifically, under Russia’s chairmanship, the Arctic Council could craft a binding agreement limiting
methane emissions, building on the record of three previous legally binding agreements negotiated among Arctic States. An additional source of potential cooperation with Russia could be to reduce the environmental and climate impacts from expanded use of the northern sea route. Other strategies are designed to slow the loss of Arctic ice and to restore the strong multi-year ice.

- Strategies being investigated for protecting and restoring Arctic ice include enhancing albedo of Arctic sea ice and marine cloud brightening.

Strategies also are being investigated for removing methane and other non-CO\(_2\) greenhouse gases from the atmosphere.

- In April 2021, the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E) announced a $35 million program to reduce methane emissions, called REMEDY (Reducing Emissions of Methane Every Day of the Year). This three-year research program looks to reduce methane emissions from three sources in the oil, gas, and coal sectors. According to ARPA-E, these three sources contribute to at least 10% of U.S. anthropogenic methane emissions. In developing the REMEDY program, ARPA-E recognized the need for further research on methane capture from the air in parallel with efforts to capture CO\(_2\).

11. Importance of protecting forests and other sinks

Halting the destruction of our forests and other carbon sinks so they continue to store vast quantities of carbon and do not turn into sources of CO\(_2\) provides critical fast mitigation, while also protecting biodiversity.

- Already, 17% of the Amazon forest has been destroyed, and there is an expected tipping point when 20 to 40% is lost.
- With increased deforestation, including from fires, greater disturbances, and higher temperatures, there is a point beyond which the Amazon rainforest would be difficult to reestablish, with recent measurements suggesting that the southeastern area of the Amazon has already shifted to a net carbon source as tree mortality increases and photosynthesis decreases.

Under current warming trends, the global land sink, which now mitigates ~30% of carbon emissions, could be cut by half as early as 2040, as increasing temperatures reduce photosynthesis and speed up respiration, calling into question national pledges under the Paris Accord, which rely heavily on land uptake of carbon to meet mitigation goals.

Effective ways to protect forests, peatlands, and other sinks include:

- Promoting forest protection and proforestation to allow existing forests to achieve their full ecological potential.
- Preserving existing peatlands and restoring degraded peatlands.
- Restoring coastal ‘blue carbon’ ecosystems.
- Prohibiting bioenergy.
12. Conclusion

The IPCC’s Special Report on 1.5 °C presents the three essential strategies for keeping the planet relatively safe: reducing CO₂, reducing SLCPs, and removing up to 1,000 billion tons of CO₂ from the atmosphere by 2100.¹⁹¹

- Cutting SLCPs is the only known strategy that can slow warming and feedbacks in time to avoid catastrophic and perhaps existential impacts¹⁹² from Hothouse Earth,¹⁹³ other than perhaps solar radiation management, which could cause unknown and potentially unmanageable side effects.
REFERENCES

1. Molina M., Zaelke D., Sarma K. M., Andersen S. O., Ramanathan V., & Kaniaru D. (2009) Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO₂ emissions. Proc. Nat’l. Acad. Sci. 106(49): 20616–20621, 20616 (“Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO₂ GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO₂ emissions.”). See also Molina M., Ramanathan V. & Zaelke D. (2020) Best path to net zero: Cut short-lived climate pollutants, Bulletin of the Atomic Scientists (“And let us be clear: By “speed,” we mean measures—including regulatory ones—that can begin within two-to-three years, be substantially implemented in five-to-10 years, and produce a climate response within the next decade or two.”).

2. Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber H. J. (2019) Climate tipping points—too risky to bet against. Comment, Nature 575(7784): 592–595, 594 (“In our view, the clearest emergency would be if we were approaching a global cascade of tipping points that led to a new, less habitable, ‘hothouse’ climate state. Interactions could happen through ocean and atmospheric circulation or through feedbacks that increase greenhouse-gas levels and global temperature. Alternatively, strong cloud feedbacks could cause a global tipping point... We argue that cascading effects might be common. Research last year analysed 30 types of regime shift spanning physical climate and ecological systems, from collapse of the West Antarctic ice sheet to a switch from rainforest to savanna. This indicated that exceeding tipping points in one system can increase the risk of crossing them in others. Such links were found for 45% of possible interactions. In our view, examples are starting to be observed. ... If damaging tipping cascades can occur and a global tipping point cannot be ruled out, then this is an existential threat to civilization. No amount of economic cost–benefit analysis is going to help us. We need to change our approach to the climate problem. ... In our view, the evidence from tipping points alone suggests that we are in a state of planetary emergency: both the risk and urgency of the situation are acute...”). See also Steffen W., et al. (2018) Trajectories of the Earth System in the Anthropocene, Proc. Nat’l. Acad. Sci. 115(33): 8252–8259, 8254 (“This analysis implies that, even if the Paris Accord target of a 1.5 °C to 2.0 °C rise in temperature is met, we cannot exclude the risk that a cascade of feedbacks could push the Earth System irreversibly onto a “Hothouse Earth” pathway. The challenge that humanity faces is to create a “Stabilized Earth” pathway that steers the Earth System away from its current trajectory toward the threshold beyond which is Hothouse Earth (Fig. 2). The human-created Stabilized Earth pathway leads to a basin of attraction that is not likely to exist in the Earth System’s stability landscape without human stewardship to create and maintain it. Creating such a pathway and basin of attraction requires a fundamental change in the role of humans on the planet. This stewardship role requires deliberate and sustained action to become an integral, adaptive part of Earth System dynamics, creating feedbacks that keep the system on a Stabilized Earth pathway (Alternative Stabilized Earth Pathway.”).

3. Xu Y. & Ramanathan V. (2017) Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes, Proc. Nat’l. Acad. Sci. 114(39): 10319–10323, 10320 (“Box 2. Risk Categorization of Climate Change to Society. ... [A] 2 °C warming would double the land area subject to deadly heat and expose 48% of the population. A 4 °C warming by 2100 would subject 47% of the land area and almost 74% of the world population to deadly heat, which could pose existential risks to humans and mammals alike unless massive adaptation measures are implemented, such as providing air conditioning to the entire population or a massive relocation of most of the population to safer climates. ... This bottom 3 billion population comprises mostly subsistent farmers, whose livelihood will be severely impacted, if not destroyed, with a one- to five-year megadrought, heat waves, or heavy floods; for those among the bottom 3 billion of the world’s population who are living in coastal areas, a 1- to 2-m rise in sea level (likely with a warming in excess of 3 °C) poses existential threat if they do not relocate or migrate. It has been estimated that several hundred million people would be subject to famine with warming in excess of 4 °C (54). However, there has essentially been no discussion on warming beyond 5 °C. Climate change-induced
Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber H. J. (2019) *Climate tipping points—too risky to bet against*, Comment, NATURE 575(7784):592–595, 592 (“Models suggest that the Greenland ice sheet could be doomed at 1.5 °C of warming, which could happen as soon as 2030. The world’s remaining emissions budget for a 50:50 chance of staying within 1.5 °C of warming is only about 500 gigatonnes (Gt) of CO2. Permafrost emissions could take an estimated 20% (100 Gt CO2) off this budget, and that’s without including methane from deep permafrost or undersea hydrates. If forests are close to tipping points, Amazon dieback could release another 90 Gt CO2 and boreal forests a further 110 Gt CO2. With global total CO2 emissions still at more than 40 Gt per year, the remaining budget could be all but erased already. We argue that the intervention time left to prevent tipping could already have shrunk towards zero, whereas the reaction time to achieve net zero emissions is 30 years at best. Hence we might already have lost control of whether tipping happens. A saving grace is that the rate at which damage accumulates from tipping — and hence the risk posed — could still be under our control to some extent.”). See also Ripple W. J., Wolf C., Newsome T. M., Gregg J. W., Lenton T. M., Palomo I., Eikelboom J. A. J., Law B. E., Huq S., Duffy P. B., & Rockström J. (2021) *World Scientists’ Warning of a Climate Emergency 2021*, BIOSCIENCE: biab079, 1–5, 1 (“There is also mounting evidence that we are nearing or have already crossed tipping points associated with critical parts of the Earth system, including the West Antarctic and Greenland ice sheets, warm-water coral reefs, and the Amazon rainforest.”).

Intergovernmental Panel on Climate Change (2018) *Summary for Policymakers, in Global Warming of 1.5 °C*, Masson-Delmotte V. P., et al. (eds.), 4 (“Human activities are estimated to have caused approximately 1.0 °C of global warming above pre-industrial levels, with a likely range of 0.8 °C to 1.2 °C. Global warming is likely to reach 1.5 °C between 2030 and 2052 if it continues to increase at the current rate. (high confidence).”). In addition to cutting CO2 emissions and emissions of the super climate pollutants, the IPCC 1.5 °C Report also calculates the need for significant CO2 removal. *Id.* at 17 (“C.3. All pathways that limit global warming to 1.5 °C with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO2 over the 21st century.”).

Xu Y., Ramanathan V., & Victor D. G. (2018) *Global warming will happen faster than we think*, Comment, NATURE 564(7734):30–32, 30–31 (“But the latest IPCC special report underplays another alarming fact: global warming is accelerating. Three trends—rising emissions, declining air pollution and natural climate cycles—will combine over the next 20 years to make climate change faster and more furious than anticipated. In our view, there’s a good chance that we could breach the 1.5 °C level by 2030, not by 2040 as projected in the special report (see ‘Accelerated warming’). The climate-modelling community has not grappled enough with the rapid changes that policymakers care most about, preferring to focus on longer-term trends and equilibria.”). See also Matthews H. D., Tokarska K. B., Rogelj J., Smith C. J., MacDougall A. H., Haustein K., Mengis N., Sippel S., Forster P. M., & Knutti R. (2021) *An integrated approach to quantifying uncertainties in the remaining carbon budget*, COMMUN. EARTH & ENVIRON. 2:1–11, 5 (“It is worth noting however, that the spread of our [remaining carbon budget (RCBs)] estimate does include negative values, with a 17% chance that the RCB for 1.5 °C is less than zero (i.e. is already exceeded). This outcome could arise due to current and/or unrealised future warming being at the higher end of their respective distributions, or in the case that the current non-CO2 forcing fraction is small or negative owing to very strong current aerosol forcing. In this case, we would expect 1.5 °C to be exceeded even in the absence of additional emissions, and any future emissions between now and the time of net-zero CO2 emissions would cause temperatures to rise further above this threshold.”).
World Meteorological Organization (2021) WMO GLOBAL ANNUAL TO DECADAL CLIMATE UPDATE, 5 (“Relative to pre-industrial conditions, the annual mean global near surface temperature is predicted to be between 0.9°C and 1.8°C higher (90% confidence interval). The chance of at least one year exceeding 1.5°C above pre-industrial levels is 44% and is increasing with time. There is a very small chance (10%) of the five-year mean exceeding this threshold. The Paris Agreement refers to a global temperature increase of 1.5°C, which is normally interpreted as the long-term warming, but temporary exceedances would be expected as global temperatures approach the threshold.”); discussed in Hodgson C. (26 May 2021) Chance of temporarily reaching 1.5°C in warming is rising. WMO says. FINANCIAL TIMES. Compare with World Meteorological Organization (2020) UNITED IN SCIENCE 2020, 16 (“Figure 2 shows that in the five-year period 2020–2024, the annual mean global near surface temperature is predicted to be between 0.91 °C and 1.59 °C above pre-industrial conditions (taken as the average over the period 1850 to 1900). The chance of at least one year exceeding 1.5 °C above pre-industrial levels is 24%, with a very small chance (3%) of the five-year mean exceeding this level. Confidence in forecasts of global mean temperature is high. However, the coronavirus lockdown caused changes in emissions of greenhouse gases and aerosols that were not included in the forecast models. The impact of changes in greenhouse gases is likely small based on early estimates (Le Quéré et al. 2020 and Carbonbrief.org.”).

Ceppi P. & Nowack P. (2021) Observational evidence that cloud feedback amplifies global warming. PROC. NAT’L. ACAD. SCI. 118(30): 1–7, 4 (“Global warming drives changes in Earth’s cloud cover, which, in turn, may amplify or dampen climate change. This “cloud feedback” is the single most important cause of uncertainty in Equilibrium Climate Sensitivity (ECS)—the equilibrium global warming following a doubling of atmospheric carbon dioxide. Using data from Earth observations and climate model simulations, we here develop a statistical learning analysis of how clouds respond to changes in the environment. We show that global cloud feedback is dominated by the sensitivity of clouds to surface temperature and tropospheric stability. Considering changes in just these two factors, we are able to constrain global cloud feedback to 0.43 ± 0.35 Wm⁻²K⁻¹ (90% confidence), implying a robustly amplifying effect of clouds on global warming and only a 0.5% chance of ECS below 2 K. … Our global constraint implies that a globally positive cloud feedback is virtually certain, thus strengthening prior theoretical and modeling evidence that clouds will provide a moderate amplifying feedback on global warming through a combination of [terrestrial] LW [longwave] and [solar] SW [shortwave] changes. This positive cloud feedback renders ECS lower than 2 K extremely unlikely, confirming scientific understanding that sustained greenhouse gas emissions will cause substantial future warming and potentially dangerous climate change.”); discussed in Berwyn B. (19 July 2021) Climate-Driven Changes in Clouds are Likely to Amplify Global Warming. INSIDE CLIMATE NEWS. (“New research, using machine learning, helps project how the buildup of greenhouse gases will change clouds in ways that further heat the planet.”).

Philip S. Y., et al. (2021) Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada. WORLD WEATHER Attribution, 1–37, 20 (“Results for current vs past climate, i.e. for 1.2°C of global warming vs pre-industrial conditions (1850-1900), indicate an increase in intensity of about 2.0 °C (1.2 °C to 2.8 °C) and a PR of at least 150. Model results for additional future changes if global warming reaches 2°C indicate another increase in intensity of about 1.3 °C (0.8 °C to 1.7 °C) and a PR of at least 3, with a best estimate of 175. This means that an event like the current one, that is currently estimated to occur only once every 1000 years, would occur roughly every 5 to 10 years in that future world with 2°C of global warming.”).

Philip S. Y., et al. (2021) Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada, WORLD WEATHER Attribution, 1–37, 1 (“Also, this heatwave was about 2°C hotter than it would have been if it had occurred at the beginning of the industrial revolution (when global mean temperatures were 1.2°C cooler than today.”).

Newburger E. (1 July 2021) Historic heat wave linked to hundreds of deaths in Pacific Northwest and Canada, CNBC (“Dr. Jennifer Vines, Multnomah County’s health officer, said the preliminary cause of death was hyperthermia, an abnormally high body temperature resulting from an inability of the body to deal with heat. Many of the dead were found alone and without air conditioning…. “While it is too early to say with certainty how many of these deaths are heat related, it is believed likely that the significant increase in deaths reported is attributable to the extreme weather B.C. has experienced,” Lapointe said in a statement.”). See also Kenney W. L., Craighead D. H., & Alexander L. M. (2014) Heat Waves, Aging, And Human Cardiovascular Health, MED. SCI. SPORTS EXERC. 46(10): 1891–1899, 1895 (“Despite the ability to tolerate extreme heat stress for short periods of time, prolonged moderate heat stress, such as that observed during a heat wave, represents a different set of stressors, and prolonged warm environmental temperatures are associated with an increased risk of mortality. For example,
temperatures above the 90th percentile in California were found to increase risk of excess mortality by 4.3% for every 5.6°C increase in apparent temperature. In 15 European cities, an increase in apparent temperature of 1°C above a threshold temperature unique to each city was associated with a 3.12% increase in mortality in Mediterranean cities and a 1.84% increase in mortality in northern European cities.

13 Philip S. Y., et al. (2021) Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada. World Weather Attribution, 1–37, 1 (“Looking into the future, in a world with 2°C of global warming (0.8°C warmer than today which at current emission levels would be reached as early as the 2040s), this event would have been another degree hotter. An event like this—currently estimated to occur only once every 1000 years, would occur roughly every 5 to 10 years in that future world with 2°C of global warming.”).

14 Vautard R., et al. (2020) Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett. 15(9): 094077, 5 (“For the France average, the heatwave was an event with a return period estimated to be 134 years. As for the June case, except for HadGEM-3A, which has a hot and dry bias, the changes in intensity are systematically underestimated, as they range from 1.1 °C (CNRM-CM6.1) to 1.6 °C (EC-EARTH). By combining information from models and observations, we conclude that the probability of such an event to occur for France has increased by a factor of at least 10 (see the synthesis in figure 3). This factor is very uncertain and could be two orders of magnitude higher. The change in intensity of an equally probable heatwave is between 1.5 degrees and 3 degrees. We found similar numerical results for Lille, with however an estimate of change in intensity higher in the observations, and models predict trend estimates that are consistently lower than observation trends, a fact that needs further investigation beyond the scope of this attribution study. We conclude for these cases that such an event would have had an extremely small probability to occur (less than about once every 1000 years) without climate change in France. Climate change had therefore a major influence to explain such temperatures, making them about 100 times more likely (at least a factor of ten).”).

15 Copernicus Atmosphere Monitoring Service (4 August 2021) Copernicus: Mediterranean region evolves into wildfire hotspot, while fire intensity reaches new records in Turkey (“With Southeast Europe currently experiencing heatwave conditions, the fire danger remains high in the area, especially across much of Turkey and around the Mediterranean. CAMS data show that the daily total Fire Radiative Power (FRP) for Turkey has reached unprecedented values in the entire dataset, which goes back to 2003.”).

16 Fischer E. M., Sippel S., & Knutti R. (2021) Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11: 689–685, 689 (“Here, we show models project not only more intense extremes but also events that break previous records by much larger margins. These record-shattering extremes, nearly impossible in the absence of warming, are likely to occur in the coming decades. We demonstrate that their probability of occurrence depends on warming rate, rather than global warming level, and is thus pathway-dependent. In high-emission scenarios, week-long heat extremes that break records by three or more standard deviations are two to seven times more probable in 2021–2050 and three to 21 times more probable in 2051–2080, compared to the last three decades. In 2051–2080, such events are estimated to occur about every 6–37 years somewhere in the northern midlatitudes.”).

17 National Oceanic and Atmospheric Administration National Centers for Environmental Information (2021) State of the Climate: Global Climate Report for May 2021 (“The seven warmest years since 1880 have all occurred since 2014, while the 10 warmest years have occurred since 2005... The decadal global land and ocean surface average temperature anomaly for 2011–2020 was the warmest decade on record for the globe, with a surface global temperature of +0.82°C (+1.48°F) above the 20th century average. This surpassed the previous decadal record (2001–2010) value of +0.62°C (+1.12°F).”).

18 Xu Y., Ramanathan V., & Victor D. G. (2018) Global warming will happen faster than we think. Nature 564(7734): 30–32, 31 (“In 2017, industrial carbon dioxide emissions are estimated to have reached about 37 gigatones2. This puts them on track with the highest emissions trajectory the IPCC has modelled so far. This dark news means that the next 25 years are poised to warm at a rate of 0.25–0.32 °C per decade3. That is faster than the 0.2 °C per decade that we have experienced since the 2000s, and which the IPCC used in its special report.”).

19 National Oceanic and Atmospheric Administration (2021) Despite pandemic shutdowns, carbon dioxide and methane surged in 2020 (“NOAA’s preliminary analysis showed the annual increase in atmospheric methane for 2020 was 14.7 parts per billion (ppb), which is the largest annual increase recorded since systematic measurements began in 1983. The global average burden of methane for December 2020, the last month for which data has been analyzed, was 1892.3 ppb. That would represent an increase of about 119 ppb, or 6 percent, since 2000.”).
20 National Oceanic and Atmospheric Administration (2021) *Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory* (“Atmospheric carbon dioxide measured at NOAA’s Mauna Loa Atmospheric Baseline Observatory peaked for 2021 in May at a monthly average of 419 parts per million (ppm), the highest level since accurate measurements began 63 years ago… The atmospheric burden of CO₂ is now comparable to where it was during the Pliocene Climatic Optimum, between 4.1 and 4.5 million years ago, when CO₂ was close to, or above 400 ppm. During that time, sea level was about 78 feet higher than today, the average temperature was 7 degrees Fahrenheit higher than in pre-industrial times, and studies indicate large forests occupied areas of the Arctic that are now tundra.”). *Note* 420 ppm is a 50% increase over pre-industrial levels of 280 ppm.

21 National Oceanic and Atmospheric Administration Global Monitoring Laboratory (2021) *NOAA Global Monitoring Laboratory – The NOAA Annual Greenhouse Gas Index (AGGI)* (last accessed 3 August 2021) (“For example, the atmospheric abundance of CO₂ has increased by an average of 1.85 ppm per year over the past 41 years (1979-2020). This increase in CO₂ is accelerating — while it averaged about 1.6 ppm per year in the 1980s and 1.5 ppm per year in the 1990s, the growth rate increased to 2.4 ppm per year during the last decade (2009-2020). The annual CO₂ increase from 1 Jan 2020 to 1 Jan 2021 was 2.50 ± 0.08 ppm (see https://gml.noaa.gov/ccgg/trends/global.html), which is slightly higher than the average for the previous decade, and much higher than the two decades before that.”). See also National Oceanic and Atmospheric Administration Global Monitoring Laboratory, *Annual Mean Global Carbon Dioxide Growth Rates* (last accessed 13 January 2020) (“The annual mean rate of growth of CO₂ in a given year is the difference in concentration between the end of December and the start of January of that year. It represents the sum of all CO₂ added to, and removed from, the atmosphere during the year by human activities and by natural processes. The annual mean growth during the previous year is determined by taking the average of the most recent December and January months, corrected for the average seasonal cycle, as the trend value for January 1, and then subtracting the same December-January average measured one year earlier. Our first estimate for the annual growth rate of the previous year is produced in February of the following year, using data through November of the previous year. That estimate will then be updated in March using data through December, and again in April using data through January. We finalize our estimate for the growth rate of the previous year in the fall of the following year because a few of the air samples on which the global estimate is based are received late in the following year. The values in this table are subject to change depending on quality control checks of the measured data, but any revisions are expected to be small. The estimates of the global mean CO₂ concentration, and thus the annual growth rate, are updated every month as new data come in.”).

22 Intergovernmental Panel on Climate Change, *Summary for Policymakers, in GLOBAL WARMING OF 1.5 °C*, Masson-Delmotte V. P., et al. (eds.), 4 (“Human activities are estimated to have caused approximately 1.0 °C of global warming above pre-industrial levels, with a likely range of 0.8 °C to 1.2 °C. Global warming is likely to reach 1.5 °C between 2030 and 2052 if it continues to increase at the current rate. (high confidence).”). In addition to cutting CO₂ emissions and emissions of the super climate pollutants, the IPCC 1.5 °C Report also calculates the need for significant CO₂ removal. *Id.*, at 17 (“C.3. All pathways that limit global warming to 1.5 °C with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO₂ over the 21st century.”). SPM-15 (“In model pathways with no or limited overshoot of 1.5 °C, global net anthropogenic CO₂ emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero around 2050 (2045–2055 interquartile range)…. Modelled pathways that limit global warming to 1.5 °C with no or limited overshoot involve deep reductions in emissions of methane and black carbon (35% or more of both by 2050 relative to 2010).”).

23 Xu Y. & Ramanathan V. (2017) *Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes*, PROC. NAT’L. ACAD. SCI. 114(39): 10315–10323, 10321 (“The SP [super pollutant] lever targets SLCPs. Reducing SLCP emissions thins the SP blanket within few decades, given the shorter lifetimes of SLCPs (weeks for BC to about 15 years for HFCs). The mitigation potential of the SP lever with a maximum deployment of current technologies … is about 0.6 °C by 2050 and 1.2 °C by 2100 (SI Appendix, Fig. SSB and Table S1).”).

24 Shindell D., et al. (2012) *Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security*, SCIENCE 335(6065): 183–189, 184–185 (“The global mean response to the CH₄ plus BC measures was −0.54 ± 0.05°C in the climate model. …Roughly half the forcing is relatively evenly distributed (from the CH₄ measures). The other half is highly inhomogeneous, especially the strong BC forcing, which is greatest over bright desert and snow or ice surfaces. Those areas often exhibit the largest warming mitigation, making the regional temperature response to aerosols and ozone quite distinct from the more homogeneous response to well-mixed greenhouse gases…. BC albedo and direct forcings are large in the Himalayas, where there is an especially pronounced response in the Karakoram, and in the Arctic, where the measures reduce projected warming over the next three decades by approximately two thirds and where regional temperature response patterns correspond fairly closely to albedo forcing (for example, they are larger over the Canadian archipelago than the interior
and larger over Russia than Scandinavia or the North Atlantic"). See also United Nations Environment Programme & World Meteorological Organization (2011) **INTEGRATED ASSESSMENT OF BLACK CARBON AND TROPOSPHERIC OZONE**, 262 (“Large impacts of the measures examined here were also seen for the Arctic despite the minimal amount of emissions currently taking place there. This occurs due to the high sensitivity of the Arctic both to pollutants that are transported there from remote sources and to radiative forcing that takes place in areas of the northern hemisphere outside the Arctic. The 16 measures examined here, including the measures on pellet stoves and coal briquettes, reduce warming in the Arctic by 0.7 °C (range 0.2 to 1.3 °C) at 2040. This is a large portion of the 1.1 °C (range 0.7 to 1.7 °C) warming projected under the reference scenario for the Arctic, and hence implementation of the measures would be virtually certain to substantially slow, but not halt, the pace of Arctic climate change.

25 Drijfhout S., Bathiany S., Beaulieu C., Brovkin V., Claussen M., Huntingford C., Scheffer M., Sgubin G., & Swingedouw D. (2015) *Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models*. PROC. NATL. ACAD. SCI. 112(43): E5777–E5786, E5777 (“Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°C, a threshold sometimes presented as a safe limit.”). See also Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhub H. J. (2019) *Climate tipping points—too risky to bet against*, Comment, *Nature* 575(7784): 592–595, 593 (“A further key impetus to limit warming to 1.5 °C is that other tipping points could be triggered at low levels of global warming. The latest IPCC projects a cluster of abrupt shifts between 1.5 °C and 2 °C, several of which involve sea ice. This ice is already shrinking rapidly in the Arctic…."

26 Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber H. J. (2019) *Climate tipping points—too risky to bet against*, Comment, *Nature* 575(7784): 592–595, 594 (“In our view, the clearest emergency would be if we were approaching a global cascade of tipping points that led to a new, less habitable, ‘hothouse’ climate state. Interactions could happen through ocean and atmospheric circulation or through feedbacks that increase greenhouse-gas levels and global temperature.”). See also Wunderling N., Donges J. F., Kurths J., & Winkelmann R. (2021) *Interacting tipping elements increase risk of climate domino effects under global warming*, *Earth Syst. Dyn.* 12(2): 601–619, 614 (“In this study, we show that this risk increases significantly when considering interactions between these climate tipping elements and that these interactions tend to have an overall destabilising effect. Altogether, with the exception of the Greenland Ice Sheet, interactions effectively push the critical threshold temperatures to lower warming levels, thereby reducing the overall stability of the climate system. The domino-like interactions also foster cascading, non-linear responses. Under these circumstances, our model indicates that cascades are predominately initiated by the polar ice sheets and mediated by the AMOC. Therefore, our results also imply that the negative feedback loop connecting the Greenland Ice Sheet and the AMOC might not be able to stabilise the climate system as a whole.”)

27 Molina M., Ramanathan V., & Zaelke D. (9 October 2018) *Climate report understates threat*, BULLETIN OF THE ATOMIC SCIENTISTS (“The UN’s Intergovernmental Panel on Climate Change’s Special Report on Global Warming of 1.5 degrees Celsius, released on Monday, is a major advance over previous efforts to alert world leaders and citizens to the growing climate risk. But the report, dire as it is, misses a key point: Self-reinforcing feedbacks and tipping points—the wildcards of the climate system—could cause the climate to destabilize even further. The report also fails to discuss the five percent risk that even existing levels of climate pollution, if continued unchecked, could lead to runaway warming—the so-called “fat tail” risk. These omissions may mislead world leaders into thinking they have more time to address the climate crisis, when in fact immediate actions are needed. To put it bluntly, there is a significant risk of self-reinforcing climate feedback loops pushing the planet into chaos beyond human control.”). See also Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber H. J. (2019) *Climate tipping points—too risky to bet against*, Comment, *Nature* 575(7784): 592–595, 592 (“In our view, the consideration of tipping points helps to define that we are in a climate emergency and strengthens this year’s chorus of calls for urgent climate action — from schoolchildren to scientists, cities and countries.”); and Witze A. (10 September 2020) *The Arctic is burning like never before — and that’s bad news for climate change*, *Nature News* (“Wildfires blazed along the Arctic Circle this summer, incinerating tundra, blanketing Siberian cities in smoke and capping the second extraordinary fire season in a row. By the time the fire season waned at the end of last month, the blazes had emitted a record 244 megatonnes of carbon dioxide — that’s 35% more than last year, which also set records. One culprit, scientists say, could be peatlands that are burning as the top of the world melts.”).
…global average during the same period.

See also Vose R. S., Huang B., Yin X., Arndt D., Easterling D. R., Lawrimore J. H., Menne M. J., Sanchez-Lugo A., & Zhang H. M. (2021) Implementing Full Spatial Coverage in NOAA’s Global Temperature Analysis, Geophys. Res. Lett. 48: e2020GL090873 (A revised NOAA dataset with greater spatial coverage confirms that the rate of Arctic warming is more than three times the global average, with “significantly more warming in the Arctic since 1980 (0.598 vs. 0.478°C dec⁻１”) compared to the global average surface temperature trend of 0.179°C dec⁻１(± 0.032);); NASA Press Release (14 January 2021) 2020 Tied for Warmest Year on Record, NASA Analysis Shows (“Earth’s warming trends are most pronounced in the Arctic, which the GISTEMP analysis shows is warming more than three times as fast as the rest of the globe over the past 30 years, according to Schmidt.”); Ballinger T. J., Overland J. E., Wang M., Bhatt U.S., Hanna E., Hanssen-Bauer I., Kim S.-J., Thoman R. L., & Walsh J. E. (2020) Surface Air Temperature, in ARCTIC REPORT CARD 2020, Thoman R. L., Richter-Menge J., & Druckemiller M. L. (eds.), National Oceanic and Atmospheric Administration (Figure 1 shows Arctic mean surface air temperature (SAT) anomalies rising by about 3°C from 1900 to 2020 compared with global average SAT increase of about 1°C); and Pistone K., Eisenman I., & Ramanathan V. (2014) Observational determination of albedo decrease caused by vanishing Arctic sea ice, Proc. Nat’l. Acad. Sci. 111(9): 3322–3326, 3322 (“The Arctic has warmed by nearly 2 °C since the 1970s, a temperature change three times larger than the global mean (1).”)

Kumar A., Yadav J., & Mohan R. (2020) Global warming leading to alarming recession of the Arctic sea-ice cover: Insights from remote sensing observations and model reanalysis, HELIYON 6(7): e04355–e04355 (“The land-ocean temperature of Global (90°S-90°N) and Arctic (70°N) regions are computed for the last 40 years (1979–2018). The average global air temperature has increased about 0.02 ± 0.02 °C year⁻¹ (~0.78 °C in the last 40-year) while the Arctic air temperature has increased about 0.08 ± 0.02 °C year⁻¹ (~3.1 °C in the last 40-year) (Figure 3a).”)

Kumar A., Yadav J., & Mohan R. (2020) Global warming leading to alarming recession of the Arctic sea-ice cover: Insights from remote sensing observations and model reanalysis, HELIYON 6(7): e04355–e04355 (“The data analysis shows rapid warming trend in the Arctic ocean region (0.089 ± 0.01 °C year⁻¹; i.e., ~3.5 °C in the last 40-year) compared to the Arctic land region (0.072 ± 0.01 °C year⁻¹; i.e., ~2.8 °C in the last 40-year).”)

Pistone K., Eisenman I., & Ramanathan V. (2014) Observational determination of albedo decrease caused by vanishing Arctic sea ice, Proc. Nat’l. Acad. Sci. 111(9): 3322–3326 (“The Arctic has warmed by nearly 2 °C since the 1970s, a temperature change three times larger than the global mean (1). During this period, the Arctic sea ice cover has retreated significantly, with the summer minimum sea ice extent decreasing by 40% (2).” See also Jansen E., et al. (2020) Past perspectives on the present era of abrupt Arctic climate change, Nat. Clim. Change 10: 714–721, 714 (“Annual mean temperature trends over the Arctic during the past 40 years show that over this period, where satellite data are available, major portions have warmed by more than 1 °C per decade (Fig. 1a, red colours and outlined portion; a warming of 4 °C within 40 years is hereafter referred to as 1 °C per decade). … Using a criterion based on the speed of near-surface air temperature warming over the past four decades, we find that the current Arctic is experiencing rates of warming comparable to abrupt changes, or D–O events, recorded in Greenland ice cores during the last glacial period. [During the last glacial period (120,000–11,000 years ago), more than 20 abrupt periods of warming, known as Dansgaard–Oeschger (D–O) events, took place18,19.] Both past changes in the Greenland ice cores and the ongoing trends in the Arctic are directly linked to sea-ice retreat—in the Nordic Seas during glacial times and in the Eurasian Arctic at present. Abrupt changes have already been experienced and could, according to state-of-the-art climate models, occur in the Arctic during the twenty-first century, but climate models underestimate current rates of change in this region.”)

Slater T., Lawrence I., Otosaka I. Shepherd A., Gourmelen N., Jacob L., Tepes P., Gilbert L., & Nienow P. (2021) Earth’s ice imbalance, The Cryosphere 15(1): 233–246, 233 (“Arctic sea ice (7.6 trillion tonnes), Antarctic ice shelves (6.5 trillion tonnes), mountain glaciers (6.1 trillion tonnes), the Greenland ice sheet (3.8 trillion tonnes), the Antarctic ice sheet (2.5 trillion tonnes), and Southern Ocean sea ice (0.9 trillion tonnes) have all decreased in mass …. [T]here can be little doubt that the vast majority of Earth’s ice loss is a direct consequence of climate warming.”)

Slater T., Lawrence I., Otosaka I. Shepherd A., Gourmelen N., Jacob L., Tepes P., Gilbert L., & Nienow P. (2021) Earth’s ice imbalance, The Cryosphere 15(1): 233–246, 233 (“The rate of [global] ice loss has risen by 57% since the 1990s – from 0.8 to 1.2 trillion tonnes per year – owing to increased losses from mountain glaciers, Antarctica, Greenland and from Antarctic ice shelves…. Even though Earth’s cryosphere has absorbed only a small fraction of the global energy imbalance [3.2 ± 0.3 %
The Arctic is rapidly warming and experiencing tremendous changes in sea ice, ocean and terrestrial regions. Lack of long-term scientific observations makes it difficult to assess whether Arctic changes statistically represent a ‘new Arctic’ climate. Here we use five Coupled Model Intercomparison Project 5 class Earth system model large ensembles to show how the Arctic is transitioning from a dominantly frozen state and to quantify the nature and timing of an emerging new Arctic climate in sea ice, air temperatures and precipitation phase (rain versus snow). Our results suggest that Arctic climate has already emerged in sea ice. Air temperatures will emerge under the representative concentration pathway 8.5 scenario in the early- to mid-twenty-first century, followed by precipitation-phase changes. Despite differences in mean state and forced response, these models show striking similarities in their anthropogenically forced changes from internal variability in Arctic sea ice, surface temperatures and precipitation-phase changes.

Mallett R. D. C., Stroeve J. C., Tsamados M., Landy J. C., Willatt R., Nandan V., & Liston G. E. (2021) Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover. The Cryosphere 15(5): 2429–2450, 2429, 2441 ("When the sea ice thickness in the period 2002–2018 is calculated using new snow data with more realistic variability and trends, we find mean sea ice thickness in four of the seven marginal seas to be declining between 60%–100% faster than when calculated with the conventional climatology."). We first assess regions where SIT was already in statistically significant decline when calculated with mW99. This is the case for all months in the Laptev and Kara seas and 4 of 7 months in the Chukchi and Barents sea. The rate of decline in these regions grew significantly when calculated with SnowModel-LG data (Fig. 10; green panels). Relative to the decline rate calculated with mW99, this represents average increases of 62% in the Laptev sea, 81% in the Kara Sea and 102% in the Barents Sea. The largest increase in an already statistically significant decline was in the Chukchi Sea in April, where the decline rate increased by a factor of 2.1. When analysed as an aggregated area and with mW99, the total marginal seas area exhibits a statistically significant negative trend in November, December, January and April. The East Siberian Sea is the only region to have a month of decline when calculated with mW99 but not with SnowModel-LG.

Landrum L. & Holland M. M. (2020) Extremes become routine in an emerging new Arctic. Nat. Clim. Change, Online Publication, 1–8, 1 ("The Arctic is rapidly warming and experiencing tremendous changes in sea ice, ocean and terrestrial regions. Lack of long-term scientific observations makes it difficult to assess whether Arctic changes statistically represent a ‘new Arctic’ climate. Here we use five Coupled Model Intercomparison Project 5 class Earth system model large ensembles to show how the Arctic is transitioning from a dominantly frozen state and to quantify the nature and timing of an emerging new Arctic climate in sea ice, air temperatures and precipitation phase (rain versus snow). Our results suggest that Arctic climate has already emerged in sea ice. Air temperatures will emerge under the representative concentration pathway 8.5 scenario in the early- to mid-twenty-first century, followed by precipitation-phase changes. Despite differences in mean state and forced response, these models show striking similarities in their anthropogenically forced changes from internal variability in Arctic sea ice, surface temperatures and precipitation-phase changes.").

Dobricic, S., Russo, S., Pozzoli, L., Wilson, J., & Vignati, E. (2020) Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 15(2): 024022 ("The increase is mainly over the Canadian Arctic Archipelago and Greenland that are surrounded by ocean undergoing a sea-ice melting trend, while the Eurasian Arctic shows no significant change in heat wave occurrence. Since 2002 the probability of experiencing heat waves in the Arctic has been similar or even higher than in the middle and low latitudes and heat waves have already started to increasingly threaten local vegetation, ecology, human health and economy.").

Cai Z., You Q., Wu F., Chen H., Chen D., & Cohen J. (2021) Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties. J. Clim. 34(12): 4871–4892, 4878 ("The Arctic’s warming rate from 1986 to 2100 is much higher than that of the Northern Hemisphere and the global mean under the three different scenarios (You et al. 2021). Figure 8 shows the spatial patterns of annual mean near-surface temperature change in the Arctic according to the MMEM for the three periods relative to 1986–2005 under the three scenarios. Projections for the regionally averaged mean near-surface temperature increases in the Arctic under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios are +2.5°C, +2.6°C, and +2.8°C respectively in the near term (2021–40), +3.3°C, +4.0°C, and +5.1°C in the midterm (2041–60), and +3.5°C, +5.8°C, and +10.4°C in the long-term (2081–2100) relative to the reference period based on the CMIP6 MMEM.").

Ciavarella A., et al. (2021) Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change 166(9): 1–18, 1 ("Over the first half of 2020, Siberia experienced the warmest period from January to June since records began and on the 20th of June the weather station at Verkhoyansk reported 38°C, the highest daily maximum temperature recorded north of the Arctic Circle... We show that human-induced climate change has dramatically increased the probability of occurrence and magnitude of extremes in both of these (with lower confidence for the probability for Verkhoyansk) and that without human influence the temperatures widely experienced in Siberia in the first half of 2020 would have been practically impossible."). See also DeGeorge K. (24 June 2021) Siberia is seeing record heat — again. Arctic Today ("On Monday, satellites with the European Union’s Copernicus Earth observation program detected exceptionally high ground temperatures across much of the region, with a high reaching an astounding 48 degrees Celsius (118 degrees Fahrenheit) near Verkhoyansk, in the Sakha Republic, while other sites recorded highs of 43 degrees C (109.4 degrees F) and 37 degrees C (98.6 degrees F). It’s important to note that those are ground temperatures, not air temperatures. For example, that latter figure was recorded in

34
35
36
37
38
Saskylakh, also in the Sakha Republic, where air temperatures taken at the same time were a slightly cooler 31.9 degrees C (89.4 degrees F). That still set a record for Saskylakh, though, as the hottest pre-solstice temperature recorded there since measurements began in 1936. The news comes a month after the Arctic Council’s Arctic Monitoring and Assessment working group issued a report confirming that the region is now warming three times faster than the global average, rather than twice as fast. And it comes almost exactly a year after the first 100-degree (Fahrenheit) temperature was recorded north of the Arctic Circle — also in Verkhoyansk.

39 National Snow and Ice Data Center (21 September 2020) Arctic sea ice decline stalls out at second lowest minimum (“On September 15, Arctic sea ice likely reached its annual minimum extent of 3.74 million square kilometers (1.44 million square miles). The minimum ice extent is the second lowest in the 42-year-old satellite record, reinforcing the long-term downward trend in Arctic sea extent. Sea ice extent will now begin its seasonal increase through autumn and winter. … Please note that this is a preliminary announcement. Changing winds or late-season melt could still reduce the Arctic ice extent, as happened in 2005 and 2010. NSIDC scientists will release a full analysis of the Arctic melt season, and discuss the Antarctic winter sea ice growth, in early October. … The 14 lowest extents in the satellite era have all occurred in the last 14 years.”). See also Richter-Menge J., Druckenmiller M. L. & Thoman R. L. (ed.) (2020) 15 Years of Arctic Observation: A Retrospective, in ARCTIC REPORT CARD 2020, Thoman R. L., Richter-Menge J., & Druckenmiller M. L. (eds.), National Oceanic and Atmospheric Administration, 8 (“As it turns out, the first publication in 2006 coincided with a cusp of transformation in the sea ice cover, which is literally and figuratively central to the Arctic system. The 2007 September minimum sea ice extent stunned scientists and grabbed world-wide media attention with a new record minimum that was 23% below the previous record low set in 2005. Just five years later, in 2012, the 2007 record was overtaken by a September minimum sea ice extent that was 18% below 2007. The 2012 record low still stands as of 2020. However, in the 14 years since ARC2006 the late summer sea ice minimum extent has never returned to pre-2007 values.”).

40 Zach Labe (@ZLabe), Twitter, 22 October 2020, 10:51PM, Graphic showing Laptev Sea Ice extent and record low regrowth for October 2020 (“A historic event is ongoing in the #Arctic. We have to pay attention to these climate change indicators.”), linked in Watts J. (22 October 2020) Alarm as Arctic sea ice not yet freezing at latest date on record, THE GUARDIAN (“For the first time since records began, the main nursery of Arctic sea ice in Siberia has yet to start freezing in late October. The delayed annual freeze in the Laptev Sea has been caused by freakishly protracted warmth in northern Russia and the intrusion of Atlantic waters, say climate scientists who warn of possible knock-on effects across the polar region. Ocean temperatures in the area recently climbed to more than 5C above average, following a record breaking heatwave and the unusually early decline of last winter’s sea ice. The trapped heat takes a long time to dissipate into the atmosphere, even at this time of the year when the sun creeps above the horizon for little more than an hour or two each day. Graphs of sea-ice extent in the Laptev Sea, which usually show a healthy seasonal pulse, appear to have flat-lined. As a result, there is a record amount of open sea in the Arctic. …The Laptev Sea is known as the birthplace of ice, which forms along the coast there in early winter, then drifts westward carrying nutrients across the Arctic, before breaking up in the spring in the Fram Strait between Greenland and Svalbard. If ice forms late in the Laptev, it will be thinner and thus more likely to melt before it reaches the Fram Strait. This could mean fewer nutrients for Arctic plankton, which will then have a reduced capacity to draw down carbon dioxide from the atmosphere.”).

41 Schweiger A. J., Steele M., Zhang J., Moore G. W. K., & Laidre K. L. (2021) Accelerated sea ice loss in the Weddel Sea points to a change in the Arctic’s Last Ice Area, COMMUN. EARTH & ENVIRON. 2: 1–11, 2 (“The Polarstern’s route was guided by satellite images showing extensive areas of open water and sea ice concentration (SIC) as low as 70% at 87N (Figs. 1a, 81b). We define our WS study area by 81.5°N–85°N, 10°W–50°W, the same area where we saw signs of change in February 2018.10. Daily 2020 WS SIC drops below the 5th percentile of the 1979–2020 time series on July 25 and stays there almost until the end of August (Fig. 1b). August 14, 2020 constitutes a record low 52% SIC minimum (Fig. 1c). Several earlier years (e.g., 1985: 57%, 1990: 67%, and 1991: 62%) also show significant low SIC minima, although none as low as 2020.”); 1 (“During spring 2020, ice accumulated in the WS (Fig. 4a, b) in response to anomalous advection (mostly in February; Fig. 4c, d). As a result, ice thickness was near its 1979–2020 mean value by June 1 according to PIOMAS; Fig. 2c), and actually thicker than in recent years (2011–2019) as confirmed by the combined CryoSat-2/SMOS satellite product… While primarily driven by unusual weather, climate change in the form of thinning sea ice contributed significantly to the record low August 2020 SIC in the WS. Several advection events, some relatively early in the melt season, transported sea ice out of the region and allowed the accumulation of heat from the absorption of solar radiation in the ocean. This heat was mixed upward and contributed to rapid melt during high wind events, notably between August 9 and 16. Ocean-forced melting in this area that is traditionally covered by thick, compact ice is a key finding of this study.”); 6 (“These ensemble experiments underline the importance of both spring sea ice and summer atmospheric forcing to August SIC. In summary, we find that: Spring ice conditions were mostly responsible for the summer SIC anomaly through the end of July, while the atmosphere was mainly responsible for driving SIC to a record low during August. Partitioning the impact of 2020 spring initial sea ice conditions vs. summer
atmospheric forcing on the sea ice anomaly at the time of the WS sea ice minimum on August 14 (see “Methods”) attributes ~20% to the initial conditions while ~80% is the due to the atmospheric forcing.”).

42 Labe Z., Magnusdottir G., & Stern H. (2018) Variability of Arctic Sea Ice Thickness Using PIOMAS and the CESM Large Ensemble, J. CLIM. 31(8): 3233–3247, 3245 (Figure 10. “While twenty-first-century sea ice thins substantially in all seasons, a large sea ice cover continues to reform during the cold season. A region of perennially thick ice north of Greenland also remains….An area of perennially thick sea ice remains north of Greenland during all months of the year, but it significantly thins (especially in September) by the mid-twenty-first century. Average September SIT in all regions eventually falls below 0.5 m during the 21st century.”).

43 Schweiger A. J., Steele M., Zhang J., Moore G. W. K., & Laidre K. L. (2021) Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area, COMMUN. EARTH & ENVIRON. 2: 1–11, 2 (“The LIA is considered to be a last refuge for ice-associated Arctic marine mammals, such as polar bears (Ursus maritimus), ice-dependent seals such as ringed seals (Pusa hispida) and bearded seals (Erignathus barbatus), and walrus (Odobenus rosmarus) throughout the 21st century.”).

44 U.S. Environmental Protection Agency (2015) U.S. NATIONAL BLACK CARBON AND METHANE EMISSIONS: A REPORT TO THE ARCTIC COUNCIL, 2, 9 (Figure 1 shows BC emissions north of the 40th parallel in 2011 amounting to 0.51 million metric tons, with 39% from open biomass burning, and 51% of that number [19.89% or ~0.10 MMT] due to wildfires; “In 2011, 51 percent of black carbon emissions from open biomass burning were from wildfires, 43 percent from prescribed burning, with the remainder from agricultural field burning.”). See also Kim J.-S., Kug J.-S., Jeong S.-J., Park H., & Schaeumann-Strub G. (2020) Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation, SCI. ADV. 6(2): eaaax308, 2, 4 (“Strictly speaking, the fire activity–related high-pressure pattern extends further into southeastern Siberia than the typical AO pattern. This suggests that the AO provides preferable conditions for strong fire activity (i.e., high-temperature anomalies), but the pressure anomaly extends westward from the North Pacific to southeastern Siberia explains more southeastern Siberian fire activity variability.”); “In contrast, we found a significant negative relationship between March to April snow cover and total annual fire activity, as positive temperature anomalies related to a positive AO in February and March drive early snowmelt in March and April with a time lag of 1 to 2 months (Fig. 3, B and C, and fig. S6) (18, 19). This is consistent with results from a snow water equivalent dataset (fig. S7). Accumulated positive temperature anomalies in late winter lead to earlier melting in snow cover’s seasonal evolution. Once snow cover is reduced, a positive snow-albedo feedback accelerates surface warming and snowmelt (fig. S8). Thus, significant negative snowmelt is observed in March and April as a result (Fig. 3, B and C). Earlier snowmelt leads to faster exposure of the ground surface and litter, which, in turn, allows favorable conditions for fire spreading because this region consists mostly of larch (Larix gmelinii) forests with a high amount of litter that can act as fire fuel (22)…. This analysis shows a generally negative relation between burned area and P/PET, meaning that more arid regions have stronger fire activity.”); and Environmental Protection Agency (2012) Report to Congress on Black Carbon, EPA–450/R-12-001.

45 Schuur E. A. G., et al. (2008) Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle, BIOSCIENCE 58(8): 701–714, 710 (“Model scenarios of fire in Siberia show that extreme fire years can result in approximately 40% greater C emissions because of increased soil organic C consumption (Soja et al. 2004). In combination with dry conditions or increased water infiltration, thawing and fires could, given the right set of circumstances, act together to expose and transfer permafrost C to the atmosphere very rapidly”). See also McCarty J. L., Smith T. E. L., & Turetsky M. R. (2020) Arctic fires re-emerging, NAT. GEOSCI. 13(10): 658–660, 659 (“Evidence from 2019 and 2020 suggests that extreme temperatures accompanied by drying are increasing the availability of surface fuels in the Arctic. New tundra vegetation types, including dwarf shrubs, sedges, grasses and mosses, as well as surface peats, are becoming vulnerable to burning, and what we typically consider to be ‘fire-resistant’ ecosystems, such as tundra bogs, fens and marshes, are burning (Fig. 1). While wildfires on permafrost in boreal regions of Siberia are not uncommon’, 2020’s fires are unusual in that more than 50% of the detected fires above 65° N occurred on permafrost with high ice content. Ice-rich permafrost is considered to contain the most carbon-rich soils in the Arctic’ and burning can accelerate thaw and carbon emission rates”)

46 Docquier D. & Koenigk T. (2021) Observation-based selection of climate models projects Arctic ice-free summers around 2035, COMMUN. EARTH & ENVIRON. 2: 1–8, 4, 6 (“In the high-emission scenario, five out of six selection criteria that include ocean heat transport provide a first ice-free Arctic in September before 2040 (range of multi-model means: 2032–2039), more than 20 years before the date of ice-free Arctic for the multi-model mean without model selection (i.e. 2061)”; “This model selection reveals that sea-ice area and volume reach lower values at the end of this century compared to the multi-model mean without selection. This arises both from a more rapid reduction in these quantities through this century and from a lower present-day sea-ice area. Using such a model selection, the timing of an almost ice-free Arctic in summer is advanced by up to 29 years
in the high-emission scenario, i.e. it could occur as early as around 2035."). See also Peng G., Matthews J. L., Wang M., Vose R., & Sun L. (2020) What Do Global Climate Models Tell Us about Future Arctic Sea Ice Coverage Changes?, CLIMATE 8(1): 15 (“Excluding the values later than 2100, the averaged projected [first ice-free Arctic summer year (FIASY)] value for RCP4.5 was 2054 with a spread of 74 years; for RCP8.5, the averaged FIASY was 2042 with a spread of 42 years. ...which put the mean FIASY at 2037. The RCP8.5 projections tended to push FIASY earlier, except for those of the MICRO-ESM and MICRO-ESM-CHEM models. Those two models also tended to project earlier Arctic ice-free dates and longer durations.”); Overland J. E. & Wang M. (2013) When will the summer Arctic be nearly sea ice free?, GEOPHYS. RES. LETT. 40(10): 2097–2101, 2097 (“Three recent approaches to predictions in the scientific literature are as follows: (1) extrapolation of sea ice volume data, (2) assuming several more rapid loss events such as 2007 and 2012, and (3) climate model projections. Time horizons for a nearly sea ice-free summer for these three approaches are roughly 2020 or earlier, 2030 ± 10 years, and 2040 or later. Loss estimates from models are based on a subset of the most rapid ensemble members. … Observations and citations support the conclusion that most global climate model results in the CMIP5 archive are too conservative in their sea ice projections. Recent data and expert opinion should be considered in addition to model results to advance the very likely timing for future sea ice loss to the first half of the 21st century, with a possibility of major loss within a decade or two.”); Guarino M.-V., et al. (2020) Sea-ice-free Arctic during the Last Interglacial supports fast future loss, NAT. CLIM. CHANGE 10: 928–932, 931 (“The predicted year of disappearance of September sea ice under high-emissions scenarios is 2086 for HadCM3 (CMIP3/5), 2048 for HadGEM2-ES (CMIP5) and 2035 for HadGEM3 (CMIP6) (Fig. 4). More broadly, multimodel CMIP3–6 mean predictions (and ranges) for a summer sea-ice-free Arctic are as follows: CMIP3, 2062 (2040–2086); CMIP5, 2048 (2020–2081); and CMIP6, 2046 (2029–2066) (Fig. 4 and Supplementary Table 3). We note that the latest year of sea-ice disappearance for CMIP6 models is 2066 and that 50% of the models predict sea-ice-free conditions between ~2030 and 2040. From this we can see that HadGEM3 is not a particular outlier, in terms of its ECS or projected ice-free year.”); and Overland J. E., Wang M., Walsh J. E., & Stroeve J. C. (2014) Future Arctic climate changes: Adaptation and mitigation time scales, EARTH’S FUTURE 2(2): 68–74, 68 (“The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s.”).

47 Labe Z., Magnusdottir G., & Stern H. (2018) Variability of Arctic Sea Ice Thickness Using PIOMAS and the CESM Large Ensemble, J. CLIM. 31(8): 3233–3247, 3244 (Figure 11 shows that the timing of the first September sea ice thickness to fall below 0.5 m occurs for all regions as early as 2025, with the exception of Greenland); 3255 (“We also show that the timing of the first September SIT below 0.5 m occurs substantially earlier than the timing of that event for the ensemble mean in the outer marginal seas, but year-to-year variability remains. Recent summer sea ice conditions have already shown this to be the case, for instance, in the Barents–Kara Seas. Even in the area of climatologically thick sea ice north of Greenland, the first September with SIT less than 0.5 m is reached, on average, by 2059 ± 7 years. While future rates of declining SIT may temporarly slow or even pause as a result of this high internal variability and the resiliency of SIV (Tilling et al. 2015; Blanchard-Wrigglesworth and Bitz 2014), future simulations from LENS indicate a continued loss of thicker, multyear sea ice and a reduction in interannual variability.”).

48 Mallett R. D. C., Stroeve J. C., Tsamados M., Landy J. C., Willatt R., Nandan V., & Liston G. E. (2021) Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover, THE CRYOSPHERE 15(5): 2429–2450, 2429, 2441 (“When the sea ice thickness in the period 2002–2018 is calculated using new snow data with more realistic variability and trends, we find mean sea ice thickness in four of the seven marginal seas to be declining between 60%–100% faster than when calculated with the conventional climatology.”).

49 Guarino M.-V., et al. (2020) Sea-ice-free Arctic during the Last Interglacial supports fast future loss, NAT. CLIM. CHANGE 10: 928–932 ("Our study has demonstrated that the high-ECS HadGEM3 model yields a much-improved representation of Arctic summers during the warmer LIG climate compared with previous old-generation model simulations. We analysed simulated surface air temperatures and proxy reconstructions of LIG summer temperatures and showed a 95% agreement between the model and observations. Arctic surface temperatures and sea ice are strongly related. By simulating an ice-free summer Arctic, our LIG CMIP6 simulation provides (direct) modelling and (indirect) observational support that the summer Arctic could have been ice free during the LIG. This offers a unique solution to the long-standing puzzle of what occurred to drive the temperatures to rise during LIG Arctic summers. The ability of the HadGEM3 model to realistically simulate the very warm LIG Arctic climate provides independent support for predictions of ice-free conditions by summer 2035. This should be of huge concern to Arctic communities and climate scientists.").

50 Crawford A., Stroeve J., Smith A., & Jahn A. (2021) Arctic open-water periods are projected to lengthen dramatically by 2100, COMMUN. EARTH & ENVIRON. 2: 1–10 (“The rate of increase in open-water period is comparable for all three emissions
scenarios until the 2040s (Fig. 2), when the rate of change declines in SSP126 (blue), persists in SSP245 (orange), and accelerates in SSP585 (red). The most southerly regions (Sea of Okhotsk, Bering Sea, Gulf of St. Lawrence, and Labrador Sea) become ice-free year-round by the end of the century in SSP585, and some models also show the Greenland and Barents seas reach 365 days of open water for all grid cells by 2100.”). See also Årthun M., Onarheim I. H., Dörr J., & Eldevik T. (2021) The seasonal and regional transition to an ice-free Arctic, GEOPHYS. RES. LETT. 48: 1–10, 1 (“The Arctic sea ice cover is currently retreating and will continue its retreat in a warming world. However, the loss of sea ice is neither regionally nor seasonally uniform. Here we present the first regional and seasonal assessment of future Arctic sea ice loss in CMIP6 models under low (SSP126) and high (SSP585) emission scenarios, thus spanning the range of future change. We find that Arctic sea ice loss— at present predominantly limited to the summer season— will under SSP585 take place in all regions and all months. The summer sea ice is lost in all the shelf seas regardless of emission scenario, whereas ice-free conditions in winter before the end of this century only occur in the Barents Sea. The seasonal transition to ice-free conditions is found to spread through the Atlantic and Pacific regions, with change starting in the Barents Sea and Chukchi Sea, respectively.”). See also Tor Eldevik (@TorEldevik), Twitter, 7 December 2020, 6:43AM (Co-author on the study sharing graphics and information about the ice-free conditions in the shelf seas).

Pistone K., Eisenman I., & Ramanathan V. (2019) Radiative Heating of an Ice-Free Arctic Ocean, GEOPHYS. RES. LETT. 46(13): 7474–7480, 7477 (“This heating of 0.71 W/m² is approximately equivalent to the direct radiative effect of emitting one trillion tons of CO₂ into the atmosphere (see calculation in Appendix A). As of 2016, an estimated 2.4 trillion tons of CO₂ have been emitted since the preindustrial period due to both fossil fuel combustion (1.54 trillion tons) and land use changes (0.82 trillion tons), with an additional 40 billion tons of CO₂ per year emitted from these sources during 2007–2016 (Le Quéré et al., 2018). Thus, the additional warming due to the complete loss of Arctic sea ice would be equivalent to 25 years of global CO₂ emissions at the current rate.”). See also IGSD’s Plain Language Summary of Pistone K., et al. (2019) Institute for Governance & Sustainable Development.

Pistone K., Eisenman I., & Ramanathan V. (2019) Radiative Heating of an Ice-Free Arctic Ocean, GEOPHYS. RES. LETT. 46(13): 7474–7480, 7479 (“The estimate of one trillion tons of CO₂ emissions is computed using the following approximate formula: \(f = (5.35 \text{ W/m}^2) \ln[xR] \) (Myhre et al., 1998). Here \(f \) is the radiative forcing relative to an arbitrary reference value \(R \), \(x \) is the atmospheric CO₂ concentration, and \(\ln \) indicates the natural logarithm. Note that this formula is an expression of the relationship that a doubling of atmospheric CO₂ causes a radiative forcing of 3.71 W/m². Considering a radiative forcing of 0.71 W/m², this translates to an increase in the atmospheric CO₂ concentration from 400 to 456.7 ppm. Since 1 ppm of atmospheric CO₂ is equivalent to 7.77 Gt (Le Quéré et al., 2018), this increase of 56.7 ppm weighs 441 Gt. The mean airborne fraction of CO₂ (i.e., fraction of CO₂ emissions that remain in the atmosphere) is estimated to be 0.44 ± 0.06 (section 6.3.2.4 of Ciais et al., 2013). This implies that the emissions needed to increase atmospheric CO₂ enough to cause 0.71 W/m² of radiative forcing is 1.0 trillion tons (i.e., 441 Gt/0.44).”).

National Oceanic and Atmospheric Administration (2021) Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory (“Atmospheric carbon dioxide measured at NOAA’s Mauna Loa Atmospheric Baseline Observatory peaked for 2021 in May at a monthly average of 419 parts per million (ppm), the highest level since accurate measurements began 63 years ago… The atmospheric burden of CO₂ is now comparable to where it was during the Pliocene Climatic Optimum, between 4.1 and 4.5 million years ago, when CO₂ was close to, or above 400 ppm. During that time, sea level was about 78 feet higher than today, the average temperature was 7 degrees Fahrenheit higher than in pre-industrial times, and studies indicate large forests occupied areas of the Arctic that are now tundra.”). Note 420 ppm is a 50% increase over pre-industrial levels of 280 ppm.

Pistone K., Eisenman I., & Ramanathan V. (2019) Radiative Heating of an Ice-Free Arctic Ocean, GEOPHYS. RES. LETT. 46(13): 7474–7480, 7476 (“Hence, we focus on the baseline estimate scenario in which cloud conditions remain unchanged from the present. We find that the complete disappearance of Arctic sea ice throughout the sunlit part of the year in this scenario would cause the average planetary albedo of the Arctic Ocean (poleward of 60 °N) to decrease by 11.5% in absolute terms. This would add an additional 21 W/m² of annual-mean solar heating over the Arctic Ocean relative to the 1979 baseline state. Averaged over the globe, this implies a global radiative heating of 0.71 W/m² (Figure 2).”).

Etminan M., Myhre G., Highwood E. J., & Shrine K. P. (2016) Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, GEOPHYS. RES. LETT. 43(24): 12614–12623, 12620 (“The new expressions increase the IPCC AR5 [Myhre et al., 2013a, Table 8.2] RFs for CO₂, CH₄, and N₂O for the period 1750–2011 from 1.82, 0.48, and 0.17 Wm⁻² to 1.83, 0.61, and 0.17 Wm⁻² or by 0.5%, 25%, and 2%, respectively; the difference in the sum of the three forcings is 0.14Wm⁻².”). National Oceanic and Atmospheric Administration (NOAA) calculated that the radiative
forcing from CO$_2$ was 2.044 W/m2 in 2018 and 2.076 W/m2 in 2019. See NOAA Earth System Research Laboratory, *The NOAA Annual Greenhouse Gas Index (AGGI)* (last updated Spring 2020). See also Wunderling N., Willeit M., Dones J. F., & Winklemann R. (2020) *Global warming due to loss of large ice masses and Arctic summer sea ice*, NAT. COMMUN. 11(5177): 1–8, 6 (“On shorter time scales, the decay of the Arctic summer sea ice would exert an additional warming of 0.19 °C (0.16–0.21 °C) at a uniform background warming of 1.5 °C (=400 ppm) above pre-industrial. On longer time scales, which can typically not be considered in CMIP projections, the loss of Greenland and West Antarctica, mountain glaciers and the Arctic summer sea ice together can cause additional GMT warming of 0.43°C (0.39–0.46 °C). This effect is robust for a whole range of CO$_2$ emission scenarios up to 700 ppm and corresponds to 29% extra warming relative to a 1.5 °C scenario.”). If the Greenland Ice Sheet, West Antarctic Ice Sheet, and mountain glaciers were also completely ice-free, the planet could see an additional 0.43 °C of warming, with 55% of that coming from the loss of albedo.

56 Pistone K., Eisenman I., & Ramanathan V. (2019) *Radiative Heating of an Ice-Free Arctic Ocean*, GEOPHYS. RES. LETT. 46(13): 7474–7480, 7477 (“We examine two perhaps unrealistically extreme future Arctic cloud scenarios: at one extreme, an ice-free Arctic Ocean that is completely cloud free and at the other extreme, an ice-free Arctic Ocean that is completely overcast. For simplicity, in the latter scenario we use distributions of cloud optical thickness based on present-day observations (see Appendix A). Both of these extreme scenarios are shown in Figure 2. The cloud-free, ice-free Arctic scenario results in a global radiative heating of 2.2 W/m2 compared with the 1979 baseline state, which is 3 times more than the 0.71 W/m2 baseline estimate derived above for unchanged clouds. The completely overcast ice-free Arctic scenario results in a global radiative heating of 0.37 W/m2, which is approximately half as large as the 0.71 W/m2 baseline estimate (Figure 2b). This suggests that even in the presence of an extreme negative cloud feedback, the global heating due to the complete disappearance of the Arctic sea ice would still be nearly double the already-observed heating due to the current level of ice loss.”).

57 Perovich D., et al. (2020) *Sea Ice, in ARCTIC REPORT CARD 2020*, Thoman R. L., Richter-Menge J., & Druckenmiller M. L. (eds.), National Oceanic and Atmospheric Administration, 48 (“The oldest ice (> 4 years old) was once a major component of the Arctic sea ice cover, but now makes up just a small fraction of the March Arctic Ocean ice pack (Fig. 3). In 1985, 33% of the ice pack was very old ice (> 4 years), but by March 2020 old ice only constituted 4.4% of the ice pack within the Arctic Ocean. The total extent of the oldest ice declined from 2.70 million km2 in March 1985 to 0.34 million km2 in March 2020. The March 2020 extent of > 4 year old ice increased from the record-low year in 2019 when it was only 1.2% (0.09 million km2) of the ice cover. This increase was due to 3–4 year old ice surviving a year and aging into > 4 year old ice. The 3–4 year old cover dropped from 6.4% in 2019 to 3.7% in 2020. Overall the percentage of ice 3 years and older was effectively unchanged. Note that these percentages are relative to ice in the Arctic Ocean region (Fig. 3, bottom inset); areas in the peripheral seas outside of this region have little or no older ice and thus do not show any change over time.”). *See also Perovich D., et al. (2019) Sea Ice, in ARCTIC REPORT CARD 2019*, Richter-Menge J., Druckenmiller M. L., & Jeffries M. (eds.), National Oceanic and Atmospheric Administration, 29–30 (“The oldest ice (>4 years old), which once dominated within the Arctic Ocean, now makes up just a small fraction of the Arctic Ocean ice pack in March, when the sea ice cover is at its maximum extent (Fig. 3). In 1985, 33% of the ice pack was very old ice (> 4 years), but by March 2019 old ice only constituted 1.2% of the ice pack within the Arctic Ocean. The total extent of the oldest ice declined from 2.52 million km2 in March 1985 to 0.09 million km2 in March 2019. … First-year ice now dominates the sea ice cover, comprising ~70% of the March 2019 ice pack, compared to approximately 35–50% in the 1980s. Given that older ice tends to be thicker, the sea ice cover has transformed from a strong, thick ice mass in the 1980s to a younger, more fragile, and thinner ice mass in recent years. First-year ice is therefore more vulnerable to melting out in summer, thereby increasing the likelihood of lower minimum ice extents.”); World Meteorological Organization (2020) *UNITED IN SCIENCE 2020*, 9 (“Arctic (as well as sub-Arctic) sea ice has seen a long-term decline in all months during the satellite era (1979–present), with the largest relative losses in late summer, around the time of the annual minimum in September, with regional variations. The long-term trend over the 1979–2019 period indicates that Arctic summer sea-ice extent has declined at a rate of approximately 13% per decade (Figure 4). In every year from 2016 to 2020, the Arctic average summer minimum and average winter maximum sea-ice extent were below the 1981–2010 long term average. In July 2020, the Arctic sea-ice extent was the lowest on record for July. There is very high confidence that Arctic sea-ice extent continues to decline in all months of the year and that since 1979, the areal proportion of thick ice, at least 5 years old, has declined by approximately 90%.”); and National Snow & Ice Data Center (2 September 2020) *Tapping the brakes*, Arctic Sea Ice News & Analysis (“As of September 1, Arctic sea ice extent stood at 4.26 million square kilometers (1.64 million square miles), the second lowest extent for that date in the satellite passive microwave record that started in 1979.”). Analysis by Zack Labe showed that sea ice for the high Arctic (above 80°N) was the lowest extent on record. *See Zack Labe (@ZLabe), Twitter, 11 September 2020, 6:19pm* (“Sea ice extent in the middle of the #Arctic Ocean is currently the lowest on record (e.g., high Arctic ~80°N+ latitude). This is a pretty impressive statistic.”).
In situ observations of waves in the central Beaufort Sea, combined with a numerical wave model and satellite sea ice observations, we show that wave energy scales with fetch throughout the seasonal ice cycle. Furthermore, we show that the increased open water of 2012 allowed waves to develop beyond pure wind seas and evolve into swells. The swells remain tied to the available fetch, however, because fetch is a proxy for the basin size in which the wave evolution occurs. Thus, both sea and swell depend on the open water fetch in the Arctic, because the swell is regionally driven. This suggests that further reductions in seasonal ice cover in the future will result in larger waves, which in turn provide a mechanism to break up sea ice and accelerate ice retreat."

"One of the most intriguing results in our analysis of track counts was the strong positive trend in the cold season from ~2,000 onward in the cold season (Figure 3) and its connection to the decreasing SIC. Increased number of cyclones has also been observed in many other studies (Rudeva & Simmonds, 2015; Sepp & Jaagus, 2011; Zahn et al., 2018), but the positive trends found in Sepp and Jaagus (2011) and Zahn et al. (2018) were not spatially coherent, and some studies have also found negative or nonsignificant cyclone trends (e.g., Simmonds & Keay, 2009). The connection between cyclones and the changing sea ice surface has also remained unclear. The results presented here show a more coherent cold season increase in the cyclone counts than previous studies have. We also showed that the increased cyclone counts in the cold season were indeed connected to the declining sea ice in both the warm and cold seasons (Figures 11 and A15). Less sea ice in the cold season or the following warm season was related to increased cyclone counts in the cold season. This was apparent in both the correlation tables and trend matrix figures (Tables 1 and A1, and Figures 3, 11, and A15). The negative correlation between the warm season SIC and cold season cyclones could be supported by the findings of Koyama et al. (2017), which connected lower summer sea ice years with more favored conditions for cyclogenesis the following fall/winter. However, they did not find an increase in the number of cyclones associated with the declining sea ice, which our results clearly showed."

"In this study we have investigated near-surface air temperature gradients along the Arctic coastline in a number of reanalysis products and observations and constructed an index for coastal baroclinicity (the AFZ index). We have used this to construct an analog for future climate change using the highest and lowest quartile years of observations, we show that wave energy scales with fetch throughout the seasonal ice cycle. Furthermore, we show that the increased open water of 2012 allowed waves to develop beyond pure wind seas and evolve into swells. The swells remain tied to the available fetch, however, because fetch is a proxy for the basin size in which the wave evolution occurs. Thus, both sea and swell depend on the open water fetch in the Arctic, because the swell is regionally driven. This suggests that further reductions in seasonal ice cover in the future will result in larger waves, which in turn provide a mechanism to break up sea ice and accelerate ice retreat."

"Over the study period in the cold season, ERA5 and CFSR data showed a statistically significant negative trend in the ACEarea metric, whereas in the ACEmax metric, no statistically significant trend was observed in any of the reanalyses (bottom row in panels a) and b), Figure 9). However, in Figure 10, which shows the range of trends and their start years (similar to Figures 3, A2, and A3) for the ACEmax metric, we can see that both positive and negative trends of different lengths have existed over our analysis period. For the cold season, early in the study period, negative trends in intensity ranging between ~−0.5 and ~−6 m·s⁻¹ season were observed, but from the 1990s onward, intensities generally increased with an average trend of ~4 m·s⁻¹ season (ERA-I) and 2 m·s⁻¹ season (ERA5/CFSR)". See also Zhang J., Lindsay R., Schweiger A., & Steele M. (2013) The impact of an intense summer cyclone on 2012 Arctic sea ice retreat, Geophys. Res. Lett. 40(4): 720–726, 722 ("The rapid reduction in ice volume during the storm
is due to enhanced ice melt (Figures 3a–3d). The simulated total ice melt is 0.12 \(\times 10^3 \) km\(^3\) d\(^{-1}\) before the cyclone, but almost doubled during the cyclone, averaging 0.21 \(\times 10^3 \) km\(^3\) d\(^{-1}\) (or 0.17 \(\times 10^3 \) km\(^3\) d\(^{-1}\) in the ICAPS) during 6–8 August (Figure 2c and Table 1). The enhanced melt is widespread in the ICAPS, but is strongest in the Canada Basin, where ice melt is as high as 0.12 m d\(^{-1}\) (Figures 3b and 3c). This explains the large decrease in ice thickness during the storm in these areas (Figures 1j–1l), up to 0.5 m by 10 August (Figure 1l). The simulated ice in most of these areas was already thin on 4 August before the storm (Figures 1i and 2b).”.

61 Valkonen E., Cassano J., & Cassano E. (2021) Arctic Cyclones and their Interactions With the Declining Sea Ice: A Recent Climatology. J. GEOPHYS. RES. ATOMS. 126(12): 1–35, 17 (“How the average seasonal intensity of the cyclones, as measured by the ACE metrics, co-varies with the SIC was also evaluated. The results for both seasons are shown in Table 2 and for the detrended data in Table A2. Similarly, to track counts, less sea ice was associated with greater intensities, in the cold season. For ACEmax, ERA-I data showed a correlation of −0.20 (nonsignificant), ERA5 −0.41 (significant), and CFSR −0.34 (significant). Similar values were observed between ACEarea and SIC, −0.31 (significant) for ERA-I, −0.39 (significant) for ERA5, and −0.26 (nonsignificant) for CFSR. Consistent results were observed between the detrended data sets (Table A2). When the SIC was preceding the cold season cyclones, there were statistically significant positive correlations observed in few of the reanalysis data sets, but results were not consistent between the data sets and ACE metrics. CFSR data did also show statistically significant correlation between warm season tracks and warm season SIC (for the ACEmax, −0.32) and ERA-I for warm season cyclone tracks and following cold season SIC (0.33 for ACEmax). Based on the results presented here, the cyclone intensity measured by the ACE metrics is negatively correlated to the SIC, but this relationship seems to mostly exist in the cold season without seasonal lags.”), 20 (“We also showed that the increased cyclone counts in the cold season were indeed connected to the declining sea ice in both the warm and cold seasons (Figures 1i and A15). Less sea ice in the cold season or the following warm season was related to increased cyclone counts in the cold season”).

62 Wang Q., Wekerle C., Wang X., Danilov S., Koldunov N., Sein D., Sidorenko D., von Appen W.-J., & Jung T. (2020) Intensification of the Atlantic Water Supply to the Arctic Ocean Through Fram Strait Induced by Arctic Sea Ice Decline. GEOPHYS. RES. LETT. 47(3): e2019GL086682, 1–10, 1 (“Substantial changes have occurred in the Arctic Ocean in the last decades. Not only sea ice has retreated significantly, but also the ocean at middepth showed a warming tendency. By using simulations we identified a mechanism that intensifies the upward trend in ocean heat supply to the Arctic Ocean through Fram Strait. The reduction in sea ice export through Fram Strait induced by Arctic sea ice decline increases the salinity in the Greenland Sea, which lowers the sea surface height and strengthens the cyclonic gyre circulation in the Nordic Seas. The Atlantic Water volume transport to the Nordic Seas and Arctic Ocean is consequently strengthened. This enhances the warming trend of the Arctic Atlantic Water layer, potentially contributing to the Arctic “Atlantification. … In these processes, the Nordic Seas play the role of a switchyard, while the reduction of sea ice export flux caused by increased air–sea heat flux over the Arctic Ocean is the switchgear. Increasing ocean heat can reduce sea ice thickness, and currently this occurs mainly in certain regions including the western Eurasian Basin near the Fram Strait and the northern Kara Sea (Carmack et al., 2015; Dmitrenko et al., 2014; Ivanov et al., 2012; Onarheim et al., 2014; Polyakov et al., 2010).”). See also Ciavarella A., et al. (2020) Prolonged Siberian heat of 2020. World Weather Attribution, 21–22 (“A large, rapid multi-method attribution study, supported by observational and large ensemble model analyses, indicates with high confidence that extremely warm periods such as the 6 months of January–June 2020 over the Siberian region would have been at least 2 °C cooler in a world without human influence. Similar events have a best estimate return time in the current climate of around 130 years and are now more than 600 times as likely to occur as they would have been at the beginning of the 20th century; with the best estimate orders of magnitude larger. By 2050 we expect such a regional warm period in the first 6 months of the year to be at least another 0.5 °C warmer, and possibly up to 5 °C warmer, with similar 6-month regional temperatures becoming correspondingly more frequent. Statements regarding the very high June daily maximum temperatures (38 °C) such as were reported at Verkhoyansk can be made only with much lower confidence. Nevertheless, results also indicate a large increase in the likelihood of such temperatures and, with more confidence, an increase in extreme daily maxima of more than 1 °C when comparing the climate of 1900 to the present day.”).

63 MacKinnon J. A., et al. (2021) A warm jet in a cold ocean. NAT. COMMUN. 12(2418): 1–12, 1 (“Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem.”).
Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss, GEOPHYS. RES. LETT. 35(L11506): 1–6, 5 (“We find that rapid sea ice loss forces a strong acceleration of Arctic land warming in CCSM3 (3.5-fold increase, peaking in autumn) which can trigger rapid degradation of currently warm permafrost and may increase the vulnerability of colder permafrost for subsequent degradation under continued warming. Our results also suggest that talik formation may be a harbinger of rapid subsequent terrestrial change. This sea ice loss – land warming relationship may be immediately relevant given the record low sea ice extent in 2007.”). See also Vaks A., Mason A., Breitenbach S., Kononov A., Osinzov A., Rosensaat M., Borshesvky A., Gutareva O., & Henderson G. (2020) Palaeoclimate evidence of vulnerable permafrost during times of low sea ice, NATURE 577(7789): 221–225, 221 (“The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air, which can lead to warming far inland. Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures. These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.”); and Witze A. (10 September 2020) The Arctic is burning like never before — and that’s bad news for climate change, NATURE NEWS (“Wildfires blazed along the Arctic Circle this summer, incinerating tundra, blanketing Siberian cities in smoke and capping the second extraordinary fire season in a row. By the time the fire season waned at the end of last month, the blazes had emitted a record 244 megatonnes of carbon dioxide — that’s 35% more than last year, which also set records. One culprit, scientists say, could be peatlands that are burning as the top of the world melts.”). For more on impacts of melting permafrost to climate and water supply, see Taillant J. D. (forthcoming 2021) Chapter 5. A Thawing Earth, in MELTDOWN: THE EARTH WITHOUT GLACIERS, Oxford University Press: Oxford, United Kingdom; and Taillant J. D. (2015) Chapter 4. Invisible Glaciers, in GLACIERS: THE POLITICS OF ICE, Oxford University Press: Oxford, United Kingdom.

The Impact of the Permafrost Carbon Feedback on Global Climate, ENVIRON. RES. LETT. 9: 1–9, 2 (“If temperatures rise and permafrost thaws, the organic material will also thaw and begin to decay, releasing carbon dioxide (CO₂) and methane (CH₄) into the atmosphere and amplifying the warming due to anthropogenic greenhouse gas emissions … The PCF is irreversible on human time scales because in a warming climate, the burial mechanisms described above slow down or stop, so there is no way to convert CO₂ into organic matter and freeze it back into the permafrost.”). See also Schaefer K., Zhang T., Bruhwiler L., & Barrett A. P. (2011) Amount and timing of permafrost carbon release in response to climate warming, TELLUS B 63(2): 165–180, 166 (“The permafrost carbon feedback (PCF) is an amplification of surface warming due to the release into the atmosphere of carbon currently frozen in permafrost (Fig. 1). As atmospheric CO₂ and methane concentrations increase, surface air temperatures will increase, causing permafrost degradation and thawing some portion of the permafrost carbon. Once permafrost carbon thaws, microbial decay will resume, increasing respiration fluxes to the atmosphere and atmospheric concentrations of CO₂ and methane. This will in turn amplify the rate of atmospheric warming and accelerate permafrost degradation, resulting in a positive PCF feedback loop on climate (Zimov et al., 2006b."); and Chen Y., Liu A., & Moore J.C. (2020) Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering, NAT. COMMUN. 11: 1–35, 2, 3 (“Between 2020 and 2069, Plnc-Panther simulations of soil C change, driven by outputs of 7 ESMs for the RCP4.5 projection, varied from 19.4 Pg C gain to 52.7 Pg C loss (mean 25.6 Pg C loss), while under G4 the ensemble mean was 11.9 Pg C loss (range: 29.2 Pg C gain to 44.9 Pg C loss). Projected C losses are roughly linearly proportional to changes in soil temperature, and each 1 °C warming in the Arctic permafrost would result in ~13.7 Pg C loss; the yintercept indicates that the Arctic permafrost, if maintained in current state, would remain a weak carbon sink. MIROC-ESM and MIROC-ESM-CHEM, with simulations of warming above 3°C, produce severe soil C losses, while GISS-E2-R with minor soil temperature change produces net soil C gains under both scenarios before 2070.”; “PlncPanTher simulations of the anoxic respiration rates over the period 2006–2010 are 1.2–1.7 Pg C year−1, and so the estimated range of CH4 emissions is 28–39 Tg year−1, which is very close to the 15–40 Tg CH4 year−1 estimates of current permafrost wetland CH4 emissions.”).

Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method, ATMOS. CHEM. PHYS. 19(7): 4257–4268, 4257 (“The microbial by-product nitrous oxide (N₂O), a potent greenhouse gas and ozone depleting substance, has conventionally been assumed to have minimal emissions in permafrost regions. This assumption has been questioned by recent in situ studies which have demonstrated that some geologic features in permafrost may, in fact, have elevated emissions comparable to those of tropical soils. However, these recent studies, along with every known in situ study focused on permafrost N₂O fluxes, have used chambers to examine small areas (< 50 m²). In late August 2013, we used the airborne eddy-covariance technique to make in situ N₂O flux measurements over the North Slope of Alaska from a low-flying aircraft spanning a much larger area: around 310 km². We observed large variability of N₂O fluxes with many areas exhibiting negligible emissions.
Still, the daily mean averaged over our flight campaign was 3.8 (2.2–4.7) mg N₂O m⁻² d⁻¹ with the 90% confidence interval shown in parentheses. If these measurements are representative of the whole month, then the permafrost areas we observed emitted a total of around 0.04–0.09 g m⁻² for August, which is comparable to what is typically assumed to be the upper limit of yearly emissions for these regions.”

67 Schuur E. A. G., et al. (2015) Climate Change and the Permafrost Carbon Feedback. Nature 520: 171–179, 171 (“The first studies that brought widespread attention to permafrost carbon estimated that almost 1,700 billion tons of organic carbon were stored in terrestrial soils in the northern permafrost zone. The recognition of this vast pool stored in Arctic and sub-Arctic regions was in part due to substantial carbon stored at depth (1 m) in permafrost, below the traditional zone of soil carbon accounting.”). See also World Bank & International Cryosphere Climate Initiative (2013) On Thin Ice: How Cutting Pollution Can Slow Warming and Save Lives.

68 Chadburn S. E., Burke E. J., Cox P. M., Friedlingstein P., Hugelius G., & Westermann S. (2017) An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7: 340–344, 340 (“The estimated permafrost area is 15.5 million km² using this technique (12.0–18.2 million km² using minimum/maximum curves), which compares well to 15.0 million km² from observations (12.6–18.4 million km²).”). See also Obu J., et al. (2019) Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km² scale. Earth-Sci. Rev. 193: 299–316, 305 (“The best estimate of the permafrost area in the Northern Hemisphere is 13.9 × 10⁶ km² (14.6% of the exposed land area), representing the total area with where MAGT < 0 °C (Fig. 3). The borehole temperature comparison can be used to incorporate uncertainty into this estimate, giving a minimum permafrost extent of 10.1 × 10⁶ km² (10.5% of exposed land area; the area within MAGT < -2 °C) and a maximum extent of 19.6 × 10⁶ km² (20.6% of exposed land area; the area within MAGT < +2 °C). The extent of the permafrost region (i.e. all permafrost zones) inferred from permafrost occurrence probabilities is 20.8 × 10⁶ km² (21.8% of exposed land area). The continuous permafrost zone occupies about half of this area, underlying 10.7 × 10⁶ km² (11.2% of exposed land area), while the discontinuous (3.1 × 10⁶ km²; 3.3% of exposed land area), sporadic (3.5 × 10⁶ km²; 3.6% of exposed land area), and isolated patches zones (3.5 × 10⁶ km²; 3.6% of exposed land area) almost equally divide the remainder.”)

69 Chadburn S. E., Burke E. J., Cox P. M., Friedlingstein P., Hugelius G., & Westermann S. (2017) An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7: 340–344, 340 (“Under a 1.5 °C stabilization scenario, 4.8 (+2.0, -2.2) million km² of permafrost would be lost compared with the 1960–1990 baseline (corresponding to the IPA map, Fig. 1b), and under a 2 °C stabilization we would lose 6.6 (+2.0, -2.2) million km², over 40% of the present-day permafrost area. Therefore, stabilizing at 1.5 °C rather than 2 °C could potentially prevent approximately 2 million km² of permafrost from thawing.”). See also Burke E.J., Zhang Y., & Krinner G. (2020) Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. The Cryosphere 14(9): 3155–3174, 3173 (“The CMIP6 models project a loss of permafrost under future climate change of between 1.7 and 2.7×10⁶ km²°C⁻¹. A more impact-relevant statistic is the decrease in annual mean frozen volume (3.0 to 5.3×10⁹ km³°C⁻¹) or around 10%–40% °C⁻¹.”)

71 Turetsky M. R., Abbott B. W., Jones M. C., Anthony K. W., Olefeldt D., Schuur E. A. G., Grosse G., Kuhry P., Hugelius G., Koven C., Lawrence D. M., Gibson C., Sannel A. B. K., & McGuire A. D. (2020) Carbon release through abrupt permafrost thaw. Nat. Geosci. 13: 138–143, 139 (“The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km² of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km² permafrost region under the warming projection of
Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost. Our simulations suggest net cumulative abrupt thaw carbon emissions on the order of 80±19 PgC by 2300 (Fig. 2a). For context, a recent modelling study found that gradual vertical thaw could result in permafrost carbon losses of 208 PgC by 2300 under RCP8.5 (multimodel mean), although model projections ranged from a net carbon gain of 167 PgC to a net loss of 641 PgC (ref. 2). Thus, our results suggest that abrupt thaw carbon losses are equivalent to approximately 40% of the mean net emissions attributed to gradual thaw. Most of this carbon release stems from newly formed features that cover <5% of the permafrost region”.

72 Compare 43 Gt CO₂e in 2100 with 220 Gt CO₂ from Gasser et al. (2018) for 20% additional emissions. See Sayedi S. S., et al. (2020) Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment, environ. Res. Lett. 15(12): 124075, 1–13, 1 (“We performed a structured expert assessment with 25 permafrost researchers to combine quantitative estimates of the stocks and sensitivity of organic carbon in the subsea permafrost domain (i.e. unglaciated portions of the continental shelves exposed during the last glacial period). Experts estimated that the subsea permafrost domain contains ~560 gigatons carbon (GtC; 170–740, 90% confidence interval) in OM and 45 GtC (10–110) in CH₄. Current fluxes of CH₄ and carbon dioxide (CO₂) to the water column were estimated at 18 (2–34) and 38 (13–110) megatons C yr⁻¹, respectively. Under Representative Concentration Pathway (RCP) RCP8.5, the subsea permafrost domain could release 43 Gt CO₂-equivalent (CO₂e) by 2100 (14–110) and 190 Gt CO₂e by 2300 (45–590), with ~30% fewer emissions under RCP2.6.”; discussed in (15 February 2021) Submarine Permafrost Has Been Overlooked as a Major Source of Greenhouse Gases, Scientists Warn, Yale Environment 360.)

73 Natali S. M., Holdren J. P., Rogers B. M., Trehanre R., Duffy P. B., Pomerance R., & MacDonald E. (2021) Permafrost carbon feedbacks threaten global climate goals, Proc. Nat’l Acad. Sci. 118(21): e2100163118, 1–3, 1 (“These nonlinear processes are particularly relevant when considering the pathway to 2 °C—that is, whether mitigation keeps global average temperature increase below 2 °C (“avoidance”) or causes an “overshoot” in temperature before stabilizing. Permafrost emissions from gradual thaw alone are highly dependent on both the extent and duration of the temperature overshoot (12). For example, for a 1.5 °C or 2 °C target, an overshoot of 0.5 °C leads to a twofold increase in permafrost emissions, and an overshoot of 1.5 °C leads to a fourfold increase.”). See also Gasser T., Kechiar M., Ciais P., Burke E. J., Kleinen T., Zhu D., Huang Y., Ekici A., & Obersteiner M. (2018) Path-dependent reductions in CO₂ emission budgets caused by permafrost carbon release, Nat. Geosci. 11(11): 830–835, 833 (“In the case of an overshoot amplitude of 0.5 °C, emissions from permafrost thaw reduce the net emission budgets by 130 (30–300) Gt CO₂ for the 1.5 °C long-term target (that is for a peak temperature of 2 °C, a case that corresponds to the Paris Climate Agreement), and by 190 (50–400) Gt CO₂ for the 2 °C target (Fig. 2a). For an overshoot amplitude of 1 °C, permafrost-induced reductions reach 210 (50–430) Gt CO₂ for the 1.5 °C target, and 270 (70–530) Gt CO₂ for 2 °C target. (Budgets for other targets and other levels of overshoot are provided in Fig. 2 and Supplementary Table 1.’’)

74 Froitzheim N., Majka J., & Zastrozhnov D. (2021) Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave, Proc. Nat’l Acad. Sci. 118(32): 1–3, 1 (“In the Taymyr Peninsula and surroundings in North Siberia, the area of the worldwide largest positive surface temperature anomaly for 2020, atmospheric methane concentrations have increased considerably during and after the 2020 heat wave. Two elongated areas of increased atmospheric methane concentration that appeared during summer coincide with two stripes of Paleozoic carbonates exposed at the southern and northern borders of the Yenisey-Khatanga basin, a hydrocarbon-bearing sedimentary basin between the Siberian Craton to the south and the Taymyr Fold Belt to the north. Over the carbonates, soils are thin to nonexistent and wetlands are scarce. The maxima are thus unlikely to be caused by microbial methane from soils or wetlands. We suggest that gas hydrates in fractures and pockets of the carbonate rocks in the permafrost zone became unstable due to warming from the surface. This process may add unknown quantities of methane to the atmosphere in the near future.”). Discussed in Carrington D. (2 August 2021) Climate crisis: Siberian heatwave led to new methane emissions, study says, The Guardian (“The Siberian heatwave of 2020 led to new methane emissions from the permafrost, according to research. Emissions of the potent greenhouse gas are currently small, the scientists said, but further research is urgently needed. Analysis of satellite data indicated that fossil methane gas leaked from rock formations known to be large hydrocarbon reservoirs after the heatwave, which peaked at 6°C above normal temperatures. Previous observations of leaks have been from permafrost soil or under shallow seas.”), and Mufson S. (3 August 2021) Scientists expected thawing wetlands in Siberia’s permafrost. What they found is ‘much more dangerous’, The Washington Post.
Degrading permafrost puts Arctic infrastructure at risk by mid-century, Nat. Commun. 9(1): 5147, 1–9, 1 (“Here we identify at unprecedentedly high spatial resolution infrastructure hazard areas in the Northern Hemisphere’s permafrost regions under projected climatic changes and quantify fundamental engineering structures at risk by 2050. We show that nearly four million people and 70% of current infrastructure in the permafrost domain are in areas with high potential for thaw of near-surface permafrost. Our results demonstrate that one-third of pan-Arctic infrastructure and 45% of the hydrocarbon extraction fields in the Russian Arctic are in regions where thaw-related ground instability can cause severe damage to the built environment. Alarming, these figures are not reduced substantially even if the climate change targets of the Paris Agreement are reached.”).

DeGeorge K. (29 June 2021) The looming Arctic collapse: More than 40% of north Russian buildings are starting to crumble, Arctic TODAY. (“Aleksandr Koizlov, Russia’s Minister of Natural Resources, told a minister’s council in May that more than 40% of the northern region’s buildings are starting to deform. Nearly 30% of oil and gas installations are inoperable. By 2050, Russian researchers estimate that the melting permafrost will inflict damages worth about $69 billion, about a quarter of the current Russian federal budget.”).

Whiteman G., Hope C., & Wadhams P. (2013) Vast costs of Arctic change, Nature 499(7459): 401–403, 401 (“We calculate that the costs of a melting Arctic will be huge, because the region is pivotal to the functioning of Earth systems such as oceans and the climate. The release of methane from thawing permafrost beneath the East Siberian Sea, off northern Russia, alone comes with an average global price tag of $60 trillion in the absence of mitigating action — a figure comparable to the size of the world economy in 2012 (about $70 trillion). The total cost of Arctic change will be much higher… The methane pulse will bring forward by 15–35 years the average date at which the global mean temperature rise exceeds 2°C above pre-industrial levels — to 2035 for the business-as-usual scenario and to 2040 for the low-emissions case (see ‘Arctic methane’). This will lead to an extra $60 trillion (net present value) of mean climate-change impacts for the scenario with no mitigation, or 15% of the mean total predicted cost of climate-change impacts (about $400 trillion). In the low-emissions case, the mean net present value of global climate-change impacts is $82 trillion without the methane release; with the pulse, an extra $37 trillion, or 45% is added… These costs remain the same irrespective of whether the methane emission is delayed by up to 20 years, kicking in at 2035 rather than 2015, or stretched out over two or three decades, rather than one. A pulse of 25 Gt of methane has half the impact of a 50 Gt pulse. The economic consequences will be distributed around the globe, but the modelling shows that about 80% of them will occur in the poorer economies of Africa, Asia and South America. … The full impacts of a warming Arctic, including, for example, ocean acidification and altered ocean and atmospheric circulation, will be much greater than our cost estimate for methane release alone. To find out the actual cost, better models are needed to incorporate feedbacks that are not included …. “).
with the most important differences being the much colder baseline regions, lower sea level, and the presence of large ice sheets covering a large part of what are currently permafrost regions in the NH. … Because the relatively large global warming of the last deglaciation (which included periods of large and rapid regional warming in the high latitudes) did not trigger CH₄ emissions from old carbon reservoirs, such CH₄ emissions in response to anthropogenic warming also appear to be unlikely.”).

81 Drijfhout S., Bathiany S., Beaulieu C., Brovkin V., Claussen M., Huntingford C., Scheffer M., Sgubin G., & Swingedouw D. (2015) Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models, PROC. NAT’L. ACAD. SCI. 112(43): E5777–E5786, E5777 (“Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2º, a threshold sometimes presented as a safe limit.”). See also Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber H. J. (2019) Climate tipping points—too risky to bet against, Comment, NATURE, 575(7784): 592–595, 593 (“A further key impetus to limit warming to 1.5 ºC is that other tipping points could be triggered at low levels of global warming. The latest IPCC models projected a cluster of abrupt shifts between 1.5 ºC and 2 ºC, several of which involve sea ice. This ice is already shrinking rapidly in the Arctic…”).

82 Hoegh-Guldberg O., et al. (2018) Impacts of 1.5 ºC of Global Warming on Natural and Human Systems, in GLOBAL WARMING OF 1.5 ºC, Masson-Delmotte V. P., et al. (eds.), Intergovernmental Panel on Climate Change, 262 (“Tipping points refer to critical thresholds in a system that, when exceeded, can lead to a significant change in the state of the system, often with an understanding that the change is irreversible. An understanding of the sensitivities of tipping points in the physical climate system, as well as in ecosystems and human systems, is essential for understanding the risks associated with different degrees of global warming. This subsection reviews tipping points across these three areas within the context of the different sensitivities to 1.5ºC versus 2ºC of global warming. Sensitivities to less ambitious global temperature goals are also briefly reviewed. Moreover, an analysis is provided of how integrated risks across physical, natural and human systems may accumulate to lead to the exceedance of thresholds for particular systems. The emphasis in this section is on the identification of regional tipping points and their sensitivity to 1.5ºC and 2ºC of global warming, whereas tipping points in the global climate system, referred to as large-scale singular events, were already discussed in Section 3.5.2. A summary of regional tipping points is provided in Table 3.7.”).

83 Abram N., et al. (2019) Framing and Context of the Report, in SPECIAL REPORT ON THE OCEAN AND CRYOSPHERE IN A CHANGING CLIMATE, Pörtner H.-O., et al. (eds.), Intergovernmental Panel on Climate Change, 81 (“While some aspects of the ocean and cryosphere might respond in a linear (i.e., directly proportional) manner to a perturbation by some external forcing, this may change fundamentally when critical thresholds are reached. A very important example for such a threshold is the transition from frozen water to liquid water at around 0 ºC that can lead to rapid acceleration of ice-melt or permafrost thaw (e.g., Abram et al., 2013; Trusel et al., 2018). Such thresholds often act as tipping points, as they are associated with rapid and abrupt changes even when the underlying forcing changes gradually (Figure 1.1a, 1.1c). Tipping elements include, for example, the collapse of the ocean’s large-scale overturning circulation in the Atlantic (Section 6.7), or the collapse of the West Antarctic Ice Sheet though a process called marine ice sheet instability (Cross-Chapter Box 8 in Chapter 3; Lenton, et al. 2008). Potential ocean and cryosphere tipping elements form part of the scientific case for efforts to limit climate warming to well below 2ºC (IPCC, 2018.”). See also Collins M., et al. (2019) Extreme, Abrupt Changes and Managing Risk, in SPECIAL REPORT ON THE OCEAN AND CRYOSPHERE IN A CHANGING CLIMATE, Pörtner H.-O., et al. (eds.), Intergovernmental Panel on Climate Change, 595–596 (Table 6.1).

84 Robinson A., Calov R., & Ganopolski A. (2012) Multistability and critical thresholds of the Greenland ice sheet, NAT. CLIM. CHANGE 2(6): 429–432, 429 (“Recent studies have focused on the short-term contribution of the Greenland ice sheet to sea-level rise, yet little is known about its long-term stability. The present best estimate of the threshold in global temperature rise leading to complete melting of the ice sheet is 3.1 ºC (1.9–5.1 ºC, 95% confidence interval) above the preindustrial climate, determined as the temperature for which the modelled surface mass balance of the present-day ice sheet turns negative. Here, using a fully coupled model, we show that this criterion systematically overestimates the temperature threshold and that the Greenland ice sheet is more sensitive to long-term climate change than previously thought. We estimate that the warming threshold leading to a monostable, essentially ice-free state is in the range of 0.8–3.2 ºC, with a best estimate of 1.6 ºC. By testing the ice sheet’s ability to regrow after partial mass loss, we find that at least one intermediate equilibrium state is possible, though for sufficiently high initial temperature anomalies, total loss of the ice sheet becomes irreversible. Crossing the threshold
alone does not imply rapid melting (for temperatures near the threshold, complete melting takes tens of millennia). However, the timescale of melt depends strongly on the magnitude and duration of the temperature overshoot above this critical threshold.”). See also Overland J., et al. (2019) The urgency of Arctic change, POLAR SCI. 21: 6–13, 9 (“The summer air temperature “viability threshold” that triggers irreversible wastage of the Greenland ice sheet was previously estimated to be for an annual global temperature increase of 2–5 °C (Gregory and Huybrechts, 2006; Huybrechts et al., 2011). An updated estimate based on a higher resolution simulation that explicitly incorporates albedo and elevation feedbacks suggests a lower loss threshold: 0.8–3.2°C (95% confidence range) (Robinson et al., 2012) with 1.6 °C above pre-industrial conditions as a best estimate. It is likely that the Greenland ice sheet enters a phase of irreversible loss under the RCP 4.5 scenario.”); Schleussner C.-F., Lissner T. K., Fischer E. M., Wohland J., Perrette M., Goлы A., Rogelj J., Childers K., Schewe J., Frieler K., Menge M., Hare W., & Schaeffe M. (2016) Differential Climate Impacts for Policy-Relevant Limits to Global Warming: the Case of 1.5°C and 2°C, EARTH SYST. DYNAM. 7(2): 327–351, 342 (“In addition to that, Levermann et al. (2013) report a steep increase in long-term SLR between 1.5 °C and 2 °C as a result of an increasing risk of crossing a destabilizing threshold for the Greenland ice-sheet (Robinson et al., 2012). The disintegration process that would lead to 5–7m global SLR, however, is projected to happen on the timescale of several millennia.”); and Kopp R. E., Shwon R. L., Wagner G., & Yuan J. (2016) Tipping elements and climate–economic shocks: Pathways toward integrated assessment, EARTH’S FUTURE 4(8): 346–372, 354–355 (“For the Greenland Ice Sheet, for example, feedbacks between ice sheet topography and atmospheric dynamics and between ice area and albedo give rise to multiple stable states [Ridley et al., 2009; Robinson et al., 2012; Levermann et al., 2013]. Robinson et al. [2012]’s coupled ice-sheet/regional climate model indicated that, at a temperature of 1°C above pre-Industrial temperatures, the stable states are at 100%, 60%, and 20% of present ice volume. At 1.6°C, however, their model produced only one stable configuration, at ~15% of the Greenland ice sheet’s present volume; thus, 1.6°C warming would represent a commitment to ~6 m of sea-level rise from the Greenland Ice Sheet. The rate of ice sheet mass loss is, however, limited by the flux at the ice sheet margins [e.g., Pfeffer et al., 2008], leading to a disconnect between committed and realized change that could persist for millennia, particularly for levels of warming near the threshold [Applegate et al., 2015].”). If warming is limited to 2 °C, Greenland could contribute 5 cm of sea-level rise by 2050 and 13 cm by 2100, but if emissions are unabated and warming rises to 5 °C, Greenland could contribute 6 cm of sea-level rise by 2050 and 23 cm by 2100. See Bamber J. L., Oppenheimer M., Kopp R. E., Aspinall W. P., & Cooke R. M. (2019) Ice sheet contributions to future sea-level rise from structured expert judgment, PROC. NAT’L. ACADEM. SCI. 116(23): 11195–11200, 11197 (Table 1).

85 Trusel L. D., Das S. B., Osman M. B., Evans M. J., Smith B. E., Fettweis X., McConnell J. R., Noël B. P. Y., & van den Broeke M. R. (2018) Nonlinear rise in Greenland ice sheet runoff in response to post-industrial Arctic warming, NATURE 564: 104–108, 104 (“Our results show a pronounced 250% to 575% increase in melt intensity over the last 20 years, relative to a pre-Industrial baseline period (eighteenth century) for cores NU and CWG, respectively (Fig. 2). Furthermore, the most recent decade contained in the cores (2004–2013) experienced a more sustained and greater magnitude of melt than any other 10-year period in the ice-core records. For GrIS cores, 2012 melt is unambiguously the strongest melt season on record. Both NU and CWG annual ice-core-derived melt records significantly (P < 0.01) correlate with one another over their 339 years of overlap, and both also with summer air temperatures from the Ilulissat region (Extended Data Table 2; Methods), relationships that improve after applying a 5-year moving average, probably reflecting the noise inherent to melt records owing to variability in meltwater percolation and refreezing. These empirically derived results revealing coherence between independent melt and temperature records emphasize broad-scale GrIS melt forcing, and suggest that summer warming (see Fig. 2) is an important component of the observed regional melt intensification.”).

86 King M. D., Howat I. M., Candela S. G., Noh M. J., Jeong S., Noël B. P. Y., van den Broeke M. R., Wouters B., & Negrete A. (2020) Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat, COMM. EARTH & ENV’T. 1(1): 1–7, 1 (“The Greenland Ice Sheet is losing mass at accelerated rates in the 21st century, making it the largest single contributor to rising sea levels. Faster flow of outlet glaciers has substantially contributed to this loss, with the cause of speedup, and potential for future change, uncertain. Here we combine more than three decades of remotely sensed observational products of outlet glacier velocity, elevation, and front position changes over the full ice sheet. We compare decadal variability in discharge and calving front position and find that increased glacier discharge was due almost entirely to the retreat of glacier fronts, rather than inland ice sheet processes, with a remarkably consistent speedup of 4–5% per km of retreat across the ice sheet. We show that widespread retreat between 2000 and 2005 resulted in a step-increase in discharge and a switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt.”). When compared to the projections of the IPCC Fifth Assessment Report, the associated sea-level rise from the recent ice sheet melting of both Greenland and Antarctica is most like the upper range projections. See Slater T., Hogg A. E., & Mottram R. (2020) Ice-sheet losses track high-end sea-level rise projections, Comment, NAT. CLIM. CHANGE, 10: 879–881, 881 (“In AR5, the ice-sheet contribution by 2100 is forecast from process-based models simulating changes in ice flow and surface mass balance (SMB) in response to climate warming. Driven by the century-scale increase in temperature forced by representative concentration pathways (RCPs), global mean SLR
estimates range from 280–980 mm by 2100 (Fig. 1). Of this, the ice-sheet contribution constitutes 4–420 mm (ref. 3). The spread of these scenarios is uncertain, scenario-dependent and increases rapidly after 2030 (Fig. 1). During 2007–2017, satellite observations show total ice-sheet losses increased the global sea level by 12.3 ± 2.3 mm and track closest to the AR5 upper range (13.7–14.1 mm for all emissions pathways) (Fig. 1). Despite a reduction in ice-sheet losses during 2013–2017 — when atmospheric circulation above Greenland promoted cooler summer conditions and heavy winter snowfall2 — the observed average SLR rate (1.23 ± 0.24 mm per year) is 45% above central predictions (0.85 ± 0.07 mm per year) and closest to the upper range (1.39 ± 0.14 mm per year) (Fig. 2).”). In mid-September 2020, consistent warming over northeast Greenland contributed to a large chunk of a glacier breaking away from the Arctic’s largest remaining ice shelf. See Amos J. (14 September 2020) Climate change: Warmth shatters section of Greenland ice shelf, BBC News (“A big chunk of ice has broken away from the Arctic's largest remaining ice shelf - 79N, or Nioghalv fjeldsfjorden - in north-east Greenland. The ejected section covers about 110 square km; satellite imagery shows it to have shattered into many small pieces. The loss is further evidence say scientists of the rapid climate changes taking place in Greenland. … At its leading edge, the 79N glacier splits in two, with a minor offshoot turning directly north. It's this offshoot, or tributary, called Spalte Glacier, that has now disintegrated. The ice feature was already heavily fractured in 2019; this summer's warmth has been its final undoing. Spalte Glacier has become a flotilla of icebergs.”).

DeConto R. M., Pollard D., Alley R. B., Velicogna I., Gasson E., Gomez N., Sadai S., Condron A., Gilford D. M., Ashe E. L., Kopp R. E., Li D., & Dutton A. (2021) The Paris Climate Agreement and future sea-level rise from Antarctica, NATURE 593(7857): 83–89, 88 (“We find that without future warming beyond 2020, Antarctica continues to contribute to 21st-century sea-level rise at a rate roughly comparable to today’s, producing 5 cm of GMSL (Global Mean Sea Level) rise by 2100 and 1.34 m by 2500 (Fig. 3, Table 1). Simulations initially following the +3 °C pathway, but with subsequent CDR (carbon dioxide reduction/negative emissions) delayed until after 2060, show a sharp jump in the pace of 21st-century sea-level rise (Fig. 3b). Every decade that CDR mitigation is delayed has a substantial long-term consequence on sea level, despite the fast decline in CO2 and return to cooler temperatures (Fig. 3c). Once initiated, marine-based ice loss is found to be unstoppable on these timescales in all mitigation scenarios (Fig. 3). The commitment to sustained ice loss is caused mainly by the onset of marine ice instabilities triggered by the loss of ice shelves that cannot recover in a warmer ocean with long thermal memory (Fig. 3c).”). See also Pattyn F., et al. (2018) The Greenland and Antarctic ice sheets under 1.5 °C global warming, NAT. CLIM. CHANGE 8(12): 1053–1061, 1053 (“On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5–2 °C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance–elevation feedback, whereas for Antarctica, this could result in a collapse of major drainage basins due to ice-sheet weakening.”).

Ripple W. J., Wolf C., Newsome T. M., Gregg J. W., Lenton T. M., Palomo I., Eikelboom J. A. J., Law B. E., Huq S., Duffy P. B., & Rockström J. (2021) World Scientists’ Warning of a Climate Emergency 2021, BIOSCIENCE: biab079, 1–5, 3 (“Greenland and Antarctica recently showed new year-to-date alltime record low levels of ice mass (figure 2f, 2g). In 2020, the minimum summer Arctic sea ice was at its second smallest extent on record, and glacier thickness also set a new all-time low (figure 2e, 2h). Glaciers are melting much faster than previously believed; they are losing 31% more snow and ice per year than they did just 15 years ago (Hugonnet et al. 2021).”).

Ramirez R. (30 July 2021) The amount of Greenland ice that melted on Tuesday could cover Florida in 2 inches of water, CNN.

Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber H. J. (2019) Climate tipping points—too risky to bet against, Comment, NATURE, 575(7784): 592–595, 594 (“In our view, the clearest emergency would be if we were approaching a global cascade of tipping points that led to a new, less habitable, ‘hothouse’ climate state11. Interactions could happen through ocean and atmospheric circulation or through feedbacks that increase greenhouse-gas levels and global temperature. Alternatively, strong cloud feedbacks could cause a global tipping point12,13. We argue that cascading effects might be common. Research last year14 analysed 30 types of regime shift spanning physical climate and ecological systems, from collapse of the West Antarctic ice sheet to a switch from rainforest to savanna. This indicated that exceeding tipping points in one system can increase the risk of crossing them in others. Such links were found for 45% of possible interactions14. In our view, examples are starting to be observed. … If damaging tipping cascades can occur and a global tipping point cannot be ruled out, then this is an existential threat to civilization. No amount of economic cost–benefit analysis is going to help us. We need to change our approach to the climate problem. … In our view, the evidence from tipping points alone suggests that we are in a state of planetary emergency; both the risk and urgency of the situation are acute….”).

Cheng L., Abraham J., Hausfather Z., & Trenberth K. E. (2019) How fast are the oceans warming?, SCIENCE 363(6423): 128–129, 128 (“About 93% of the ocean’s energy imbalance accumulates in the ocean as increased ocean heat content (OHC).”).
of greenhouse gas emissions. We find a higher sensitivity of meso-scale extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. “Plain Language Summary. To keep within 1.5 or 2°C of global warming, we need massive reductions of greenhouse gas emissions. At the same time, aerosol emissions will be strongly reduced. We show how cleaning up aerosols, predominantly from coal to “cleaner” natural gas, will reduce CO₂ emission and thus would be effective in minimizing future increases in the committed warming. However, because it also reduces air pollution and thus the ABC [Atmospheric Brown Cloud] masking effect, it may speed up the approach to the committed warming of 2.4°C (1.4–4.3°C).”). See also Samset B. H., Sand M., Smith C. J., Bauer S. E., Forster P. M., Fuglestvedt J. S., Osprey S., & Schleussner C.-F. (2018) Climate impacts from a removal of anthropogenic aerosol emissions, Geophys. Res. Lett. 45(2): 1020–1029, 1020 (“Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to co-emission with GHG, and measures to improve air quality. … Removing aerosols reduces atmospheric temperatures somewhat elevated for several decades. Elevated temperatures last longer for a gas with a 100-ỹ lifetime because, in this case, radiative forcing and accompanying further ocean heat uptake continue long after emissions cease. As radiative forcing decays further, the energy is ultimately restored from the ocean to the atmosphere. Fig. 3 shows that the slow timescale of ocean heat uptake has two important effects. It limits the transfer of energy to the ocean if emissions and radiative forcing occur only for a few decades or a century. However, it also implies that any energy that is added to the ocean remains available to be transferred back to the atmosphere for centuries after cessation of emissions.”).
The removal of CO\textsubscript{2} alone (Fig. 3d), the faster response of SO\textsubscript{2} cooling followed by a slow transition to dominance by the effects of CO\textsubscript{2}. As a result, the unmasking of coemitted aerosol cooling (a net warming effect) is more rapid in the decreasing CO\textsubscript{2} emissions beginning in 2020 (CN2020) mitigation scenario (SI Appendix, Fig. S2B). In the mitigation scenario for CO\textsubscript{2} (i.e. INDCs and post-2030 decarbonization), emissions effectively increase at a rate of 0.8%/year before 2030 (following INDCs) and then decrease at a rate of 5.5%/year after 2030 (CN2030 in Fig. S2a). In the baseline-fast warming scenario against which these mitigation scenarios are compared includes “unmasking” as emissions of cooling aerosols are reduced in the baseline-fast (RCP6.0) scenarios. If these aerosol emissions continued at current emission levels, undesired from air quality perspective, the warming in 2100 would be 0.6°C smaller.

Xu Y. & Ramanathan V. (2017) \textit{Well below 2°C: Mitigation strategies for avoiding dangerous to catastrophic climate changes}, Proc. Nat’l Acad. Sci. 114(39): 10315–10323, Supplemental Information, 1 (“In the Baseline-default scenario for CO\textsubscript{2}, the emission keeps increasing throughout the 21st century (RCP8.5). The 5% to 95% range of baseline-default is also adopted (Fig. S1b). In the baseline-fast scenario for CO\textsubscript{2} (pre-INDCs), emissions effectively increase at a rate of 1.1%/year before 2030 and then following Representative Concentration Pathway 6.0 (Fig. S1a). In the mitigation scenario for CO\textsubscript{2} (i.e. INDCs and post-2030 decarbonization), emissions effectively increase at a rate of 0.8%/year before 2030 (following INDCs) and then decrease at a rate of 5.5%/year after 2030 (CN2030 in Fig. S2a).”).

Shindell D. & Smith C. J. (2019) \textit{Climate and air-quality benefits of a realistic phase-out of fossil fuels}, Nature 573: 408–411, 409–410 (“These results differ greatly from the idealized picture of a near-instantaneous response to the removal of aerosol cooling followed by a slow transition to dominance by the effects of CO\textsubscript{2}. In these more plausible cases, the temperature effects of the reduction in CO\textsubscript{2}, SO\textsubscript{2} and CH\textsubscript{4} roughly balance one another until about 2035. After this, the cooling effects of reduced CO\textsubscript{2} continue to increase, whereas the warming induced by a reduction in SO\textsubscript{2} and the cooling induced by the reduction in CH\textsubscript{4} taper off, such that the cooling induced by the reduction in CO\textsubscript{2} dominates (Fig. 3). Examining the effects of CO\textsubscript{2} and SO\textsubscript{2} alone (Fig. 3d), the faster response of SO\textsubscript{2} to the changes in emissions means that the net effect of these two pollutants would indeed be a short-term warming—but a very small one, of between 0.02 °C and 0.10 °C in the ensemble mean temperature response (up to 0.30 °C for the 95th percentile across pathways). Accounting for all fossil-related emissions (Fig. 3e), any brief climate penalty decreases to no more than 0.05 °C (0.19 °C at the 95th percentile), with the smaller value largely due to the additional near-term cooling from reductions in methane. Nearly all the warming in the 2020s and 2030s (Fig. 2) is therefore attributable to the effect of the residual emissions (mainly of CO\textsubscript{2}) during the gradual fossil phase-out, as well as the response to historical emissions.”).
We note that, although this study focuses on the effects of fossil combustion, the measures we examine would be virtually certain to substantially slow, but not halt, the pace of Arctic warming. As methane and nitrous oxide from agriculture—along with biofuels that are a large source of warming black carbon, could eliminate any near-term penalty entirely. In fact, given that the net effect of the fossil-fuel phase-out on temperature is minimal for most of the first 20 years (Fig. 3), reducing those other emissions is the only plausible way in which to decrease warming during that period.”).

See also Lelieveld J., Klingmüller K., Pozzer A., Burnett R. T., Haines A., & Ramanathan V. (2019) *Effects of fossil fuel and total anthropogenic emission removal on public health and climate*, *Proc. Natl. Acad. Sci.* 116(15): 7192–7197, 7194 (“Some near-term mitigation can be achieved from the simultaneous reduction of short-lived greenhouse gases such as methane (CH₄), O₃, and hydrofluorocarbons (HFCs) (15. 23–25). Fossil-fuel-related CH₄ emissions constitute nearly 20% of the total source, and removing all anthropogenic CH₄ (nearly 60% of the source), in addition to anthropogenic O₃, would limit the near-term warming to 0.36±0.06 °C. While the current climate forcing of HFCs is still small, it will be critical to prevent increases in the future, as they are potent greenhouse gases (26). Table 1 presents the unavoidable net warming from emission control measures that simultaneously affect aerosols and greenhouse gases, which have many sources in common. SI Appendix, Table S1 lists these results for all countries, including the uncertainty intervals.”).

Xu Y. & Ramanathan V. (2017) *Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes*, *Proc. Natl. Acad. Sci.* 114(39): 10315–10323, 10321 (“The SP [super pollutant] lever targets SLCPs. Reducing SLCP emissions thins the SP blanket within few decades, given the shorter lifetimes of SLCPs (weeks for BC to about 15 years for HFCs). The mitigation potential of the SP lever with a maximum deployment of current technologies … is about 0.6 °C by 2050 and 1.2 °C by 2100 (SI Appendix, Fig. SSB and Table S1).”).

Shindell D., et al. (2012) *Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security*, *Science* 335(6065): 183–189, 183–185 (“The global mean response to the CH₄ plus BC measures was −0.54 ± 0.05°C in the climate model. …Roughly half the forcing is relatively evenly distributed (from the CH₄ measures). The other half is highly inhomogeneous, especially the strong BC forcing, which is greatest over bright desert and snow or ice surfaces. Those areas often exhibit the largest warming mitigation, making the regional temperature response to aerosols and ozone quite distinct from the more homogeneous response to well-mixed greenhouse gases. …BC albedo and direct forcings are large in the Himalayas, where there is an especially pronounced response in the Karakoram, and in the Arctic, where the measures reduce projected warming over the next three decades by approximately two thirds and where regional temperature response patterns correspond fairly closely to albedo forcing (for example, they are larger over the Canadian archipelago than the interior and larger over Russia than Scandinavia or the North Atlantic).”). See also United Nations Environment Programme & World Meteorological Organization (2011) *Integrated Assessment of Black Carbon and Tropospheric Ozone*, 262 (“Large impacts of the measures examined here were also seen for the Arctic despite the minimal amount of emissions currently taking place there. This occurs due to the high sensitivity of the Arctic both to pollutants that are transported there from remote sources and to radiative forcing that takes place in areas of the northern hemisphere outside the Arctic. The 16 measures examined here, including the measures on pellet stoves and coal briquettes, reduce warming in the Arctic by 0.7 °C (range 0.2 to 1.3 °C) at 2040. This is a large portion of the 1.1 °C (range 0.7 to 1.7 °C) warming projected under the reference scenario for the Arctic, and hence implementation of the measures would be virtually certain to substantially slow, but not halt, the pace of Arctic climate change.”).

Allen M. R., et al. (2018) *Chapter 1: Framing and Context*, in *Global Warming of 1.5 °C*, Masson-Delmotte V. P., et al. (eds.), Intergovernmental Panel on Climate Change, 61 (“If emission reductions do not begin until temperatures are close to the proposed limit, pathways remaining below 1.5°C necessarily involve much faster rates of net CO₂ emission reductions (Figure 1.4, green lines), combined with rapid reductions in non-CO₂ forcing and these pathways also reach 1.5°C earlier. Note that the emissions associated with these schematic temperature pathways may not correspond to feasible emission scenarios, but they do illustrate the fact that the timing of net zero emissions does not in itself determine peak warming: what matters is total cumulative emissions up to that time. Hence every year’s delay before initiating emission reductions decreases by approximately two years the remaining time available to reach zero emissions on a pathway still remaining below 1.5°C (Allen and Stocker, 2013; Leach et al., 2018).”). See also United Nations Environment Programme & Climate & Clean Air Coalition (2021) *Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions*, 20 (“For the 2015 United
Nations (UN) Paris Agreement to succeed, reducing anthropogenic methane in addition to carbon dioxide is paramount. Currently the largest contributor to the departure from an idealized path to the 2°C target used in the IPCC’s Fifth Assessment Report is the growth in methane amounts (Figure 1.3). Achieving the more stringent 1.5°C target requires even larger decreases in methane. The IPCC’s 2018 Special Report concluded that reaching a sustainable mitigation pathway to 1.5°C can only be achieved with deep and simultaneous reductions of carbon dioxide and all non-carbon dioxide climate forcing emissions, including short-lived climate pollutants such as methane.

107 Ripple W. J., Wolf C., Newsome T. M., Gregg J. W., Lenton T. M., Palomo I., Eikelboom J. A. J., Law B. E., Huq S., Duffy P. B., & Rockström J. (2021) World Scientists’ Warning of a Climate Emergency 2021, BIOSCIENCE: biab079, 1–5. 4 (“Given the impacts we are seeing at roughly 1.25 degrees Celsius (°C) warming, combined with the many reinforcing feedback loops and potential tipping points, massive-scale climate action is urgently needed. The remaining carbon budget for 1.5°C was recently estimated to have a 17% chance of being negative, indicating that we may already have lost the opportunity to limit warming to this level without overshoot or risky geoengineering (Matthews et al. 2021). Because of the limited time available, priorities must shift toward immediate and drastic reductions in dangerous short-lived greenhouse gases, especially methane (UNEP/CCAC 2021).”).

108 United Nations Environment Programme & Climate & Clean Air Coalition (2021) GLOBAL METHANE ASSESSMENT: BENEFITS AND COSTS OF MITIGATING METHANE EMISSIONS, 17 (“Mitigation of methane is very likely the strategy with the greatest potential to decrease warming over the next 20 years.”).

109 United Nations Environment Programme & Climate & Clean Air Coalition (2021) GLOBAL METHANE ASSESSMENT: BENEFITS AND COSTS OF MITIGATING METHANE EMISSIONS, 8 (“Reducing human-caused methane emissions is one of the most cost-effective strategies to rapidly reduce the rate of warming and contribute significantly to global efforts to limit temperature rise to 1.5°C. Available targeted methane measures, together with additional measures that contribute to priority development goals, can simultaneously reduce human-caused methane emissions by as much as 45 per cent, or 180 million tonnes a year (Mt/yr) by 2030. This will avoid nearly 0.3°C of global warming by the 2040s and complement all long-term climate change mitigation efforts. It would also, each year, prevent 255 000 premature deaths, 775 000 asthma related hospital visits, 73 billion hours of lost labour from extreme heat, and 26 million tonnes of crop losses globally.”).

110 United Nations Environment Programme & Climate & Clean Air Coalition (2021) GLOBAL METHANE ASSESSMENT: BENEFITS AND COSTS OF MITIGATING METHANE EMISSIONS, 78 (“The total valuation per tonne of methane for all market and non-market impacts assessed here is roughly US$ 4 300 using a cross-nation income elasticity for WTP of 1.0 and US$ 7 900 using an elasticity of 0.4 (Figure 3.19) – values are ~US$ 150 per tonne larger for fossil-related emissions. This value is dominated by mortality effects, of which US$ 2 500 are due to ozone and ~US$ 700 are due to heat using the more conservative 500 deaths per million tonnes of methane of this analysis’ two global-scale estimates and a WTP income elasticity of 1.0, followed by climate impacts.”).

111 United Nations Environment Programme & Climate & Clean Air Coalition (2021) GLOBAL METHANE ASSESSMENT: BENEFITS AND COSTS OF MITIGATING METHANE EMISSIONS, 21 (“The short lifetime of methane, and the quick response of methane abundance to reduced emissions described earlier, mean that any action taken to reduce emissions will have an immediate pay off for climate in addition to the current and near-future human health and agricultural production. Observations over the past few decades have shown that decreased emissions lead quickly to lower methane levels relative to those that could be expected in the absence of the decreases. That is, there are no mechanisms that offset the decreases even though there are significant natural sources. Simply put, natural emissions do not make up for the decrease in anthropogenic emission. Indeed, the expectation that a reduction in emissions will yield quick results, in the order of a decade, is confirmed and emphasizes the importance of methane.”).

ENVRON. RES. LETT. 16(5): 054042 (“Pursuing all mitigation measures now could slow the global-mean rate of near-term decadal warming by around 30%, avoid a quarter of a degree centigrade of additional global-mean warming by midcentury, and set ourselves on a path to avoid more than half a degree centigrade by end of century. On the other hand, slow implementation of these measures may result in an additional tenth of a degree of global-mean warming by midcentury and 5% faster warming rate (relative to fast action), and waiting to pursue these measures until midcentury may result in an additional two tenths of a degree centigrade by midcentury and 15% faster warming rate (relative to fast action)

United Nations Environment Programme & World Meteorological Organization (2011) INTEGRATED ASSESSMENT OF BLACK CARBON AND TROPOSPHERIC OZONE, 254 (“Evaluating global mean temperature change, it was found that the targeted measures to reduce emissions of methane and BC could greatly reduce warming rates over the next few decades (Figure 6.1; Box 6.1). When all measures are fully implemented, warming during the 2030s relative to the present would be only half as much as in the reference scenario. In contrast, even a fairly aggressive strategy to reduce CO₂ emissions, as for the CO₂-mitigation scenario, does little to mitigate warming until after the next 20-30 years (Box 6.2.”); 262 (“Large impacts of the measures examined here were also seen for the Arctic despite the minimal amount of emissions currently taking place there. This occurs due to the high sensitivity of the Arctic both to pollutants that are transported there from remote sources and to radiative forcing that takes place in areas of the northern hemisphere outside the Arctic. The 16 measures examined here, including the measures on pellet stoves and coal briquettes, reduce warming in the Arctic by 0.7 °C (range 0.2 to 1.3 °C) at 2040. This is a large portion of the 1.1 °C (range 0.7 to 1.7 °C) warming projected under the reference scenario for the Arctic, and hence implementation of the measures would be virtually certain to substantially slow, but not halt, the pace of Arctic climate change.”).

United Nations Environment Programme & Climate & Clean Air Coalition (2021) GLOBAL METHANE ASSESSMENT: BENEFITS AND COSTS OF MITIGATING METHANE EMISSIONS, Figure 5.1.

United Nations Environment Programme & Climate & Clean Air Coalition (2021) GLOBAL METHANE ASSESSMENT: BENEFITS AND COSTS OF MITIGATING METHANE EMISSIONS, 10 (“The levels of methane mitigation needed to keep warming to 1.5°C will not be achieved by broader decarbonization strategies alone. The structural changes that support a transformation to a zero-carbon society found in broader strategies will only achieve about 30 per cent of the methane reductions needed over the next 30 years. Focused strategies specifically targeting methane need to be implemented to achieve sufficient methane mitigation. At the same time, without relying on future massive-scale deployment of unproven carbon removal technologies, expansion of natural gas infrastructure and usage is incompatible with keeping warming to 1.5°C. (Sections 4.1, 4.2 and 4.3)”).

S.B. 1383, 2015–2016 Leg. (Cal. 2016) (“The California Global Warming Solutions Act of 2006 designates the State Air Resources Board as the state agency charged with monitoring and regulating sources of emissions of greenhouse gases. The state board is required to approve a statewide greenhouse gas emissions limit equivalent to the statewide greenhouse gas emissions level in 1990 to be achieved by 2020. The state board is also required to complete a comprehensive strategy to reduce emissions of short-lived climate pollutants, as defined, in the state. This bill would require the state board, no later than January 1, 2018, to approve and begin implementing that comprehensive strategy to reduce emissions of short-lived climate pollutants to achieve a reduction in methane by 40%, hydrofluorocarbon gases by 40%, and anthropogenic black carbon by 50% below 2013 levels by 2030, as specified. The bill also would establish specified targets for reducing organic waste in landfills.”).

United States Climate Alliance (2018) FROM SLCP CHALLENGE TO ACTION: A ROADMAP FOR REDUCING SHORT-LIVED CLIMATE POLLUTANTS TO MEET THE GOALS OF THE PARIS AGREEMENT, 11 (“Significant additional opportunities exist to cut methane emissions quickly and cost effectively across the U.S. Capturing the full potential of expected reduction opportunities, as described in Appendix A, could reduce methane emissions by 40-50 percent below current levels in the U.S. Climate Alliance. Existing and emerging strategies and technologies can achieve these reductions by 2030.”).

United States Climate Alliance (2018) FROM SLCP CHALLENGE TO ACTION: A ROADMAP FOR REDUCING SHORT-LIVED CLIMATE POLLUTANTS TO MEET THE GOALS OF THE PARIS AGREEMENT, 11 (“There is an opportunity for the U.S. Climate Alliance to help fulfill the commitment by the U.S., Canada, and Mexico to implement federal regulations on new and existing sources in the oil and gas sector to reduce methane emissions by 40-45 percent below 2012 levels by 2025.”). In 2016, the U.S., Canada, and Mexico committed to reducing methane emissions in the oil and gas sector by 40–45% by 2025 (compared to 2012 levels). See White House Office of the Press Secretary (29 June 2016) Leaders’ Statement on a North American Climate, Clean Energy, and Environment Partnership, 2 (“Today, Mexico will join Canada and the United States in committing to reduce their methane emissions from the oil and gas sector – the world’s largest methane source – 40% to 45% by 2025, towards achieving the greenhouse gas targets in our nationally determined contributions. To achieve this goal, the three countries
commit to develop and implement federal regulations to reduce emissions from existing and new sources in the oil and gas sector as soon as possible. We also commit to develop and implement national methane reduction strategies for key sectors such as oil and gas, agriculture, and waste management, including food waste.”).

119 United States Climate Alliance (2018) From SLCP Challenge to Action: A Roadmap for Reducing Short-Lived Climate Pollutants to Meet the Goals of the Paris Agreement, 15 (“Significant opportunities for reducing methane emissions from landfills and capturing value can be seized by reducing food loss and waste, diverting organic waste to beneficial uses, and improving landfill management. These and other actions collectively could reduce methane emissions from waste by an estimated 40-50 percent by 2030 (Appendix A). Such efforts could add value in our states by reducing emissions of volatile organic compounds and toxic air contaminants from landfills, recovering healthy food for human consumption in food insecure communities, supporting healthy soils and agriculture, generating clean energy and displacing fossil fuel consumption, and providing economic opportunities across these diverse sectors. Many of these benefits will accrue in low-income and disadvantaged communities.”).

120 United States Climate Alliance (2018) From SLCP Challenge to Action: A Roadmap for Reducing Short-Lived Climate Pollutants to Meet the Goals of the Paris Agreement, 13 (“Actions to improve manure management and to reduce methane from enteric fermentation have the potential to significantly reduce agricultural methane emissions across U.S. Climate Alliance states Promising technologies are also emerging that may cut methane emissions from enteric fermentation by 30 percent or more (Appendix A). Developing strategies that work for farmers and surrounding communities can significantly reduce methane emissions, increase and diversify farm revenues, and support water quality and other environmental benefits.”). See also Ross E. G., et al. (2020) Effect of SOP “STAR COW” on Enteric Gaseous Emissions and Dairy Cattle Performance. Sustainability 12(24): 1–12, 1 (“The aim of this study was to investigate the efficacy of the commercial feed additive SOP STAR COW (SOP) to reduce enteric emissions from dairy cows and to assess potential impacts on milk production. . . . SOP-treated cows over time showed a reduction in CH4 of 20.4% from day 14 to day 42 (p = 0.014), while protein % of the milk was increased (+4.9% from day 0 to day 14 (p = 0.036) and +6.5% from day 0 to day 42 (p = 0.002)).”).

121 United States Climate Alliance (2018) From SLCP Challenge to Action: A Roadmap for Reducing Short-Lived Climate Pollutants to Meet the Goals of the Paris Agreement, 13 (“Actions to improve manure management and to reduce methane from enteric fermentation have the potential to significantly reduce agricultural methane emissions across U.S. Climate Alliance states. Improving manure storage and handling, composting manure, utilizing pasture-based systems, or installing anaerobic digesters significantly reduces methane from manure management on dairy, swine, and other livestock operations. These practices may reduce methane from manure management by as much as 70 percent in U.S. Climate Alliance states (Appendix A) and can help improve soil quality and fertility, reduce water use and increase water quality, reduce odors, and decrease the need for synthetic fertilizers and associated greenhouse gas emissions Developing strategies that work for farmers and surrounding communities can significantly reduce methane emissions, increase and diversify farm revenues, and support water quality and other environmental benefits.”). See also Borgonovo F., et al. (2019) Improving the Sustainability of Dairy Slurry with a Commercial Additive Treatment. Sustainability 11(18): 1–14, 8 (claiming that additives treating liquid manure of dairy cows, made from agricultural gypsum processed with proprietary technology [SOP LAGOON], showed significant reductions of climate emissions from waste slurry, eliminating ammonia and N2O, and significantly reducing CH4 and CO2, “N2O, CO2, and CH4 emissions, from the treated slurry, were respectively 100%, 22.9% and 21.5% lower than the control at T4 [Day 4] when the emission peaks were recorded.”).

122 White House Office of the Press Secretary (29 June 2016) Leaders’ Statement on a North American Climate, Clean Energy, and Environment Partnership (“Today, Mexico will join Canada and the United States in committing to reduce their methane emissions from the oil and gas sector – the world’s largest industrial methane source – 40% to 45% by 2025, towards achieving the greenhouse gas targets in our nationally determined contributions. To achieve this goal, the three countries commit to develop and implement federal regulations to reduce emissions from existing and new sources in the oil and gas sector as soon as possible. We also commit to develop and implement national methane reduction strategies for key sectors such as oil and gas, agriculture, and waste management, including food waste.”). See also White House Office of the Press Secretary (29 June 2016) North American Climate, Clean Energy, and Environment Partnership Action Plan (“Reduce methane emissions from the oil and gas sector, the world’s largest industrial methane source, 40-45% by 2025 towards achieving the greenhouse gas targets in our nationally determined contributions, and explore additional opportunities for methane reductions. The three countries commit to develop and implement federal regulations for both existing and new sources as soon as possible to achieve the target. We intend to invite other countries to join this ambitious target or develop their own methane reduction goal.”).
The present Communication therefore: 1. Presents an EU-wide, economy-wide greenhouse gas emissions reduction target by 2030 compared to 1990 of at least 55% including emissions and removals. The EU is implementing its current 2030 climate target of at least 40% greenhouse gas emissions reductions through three key pieces of climate legislation.

Nevertheless, the 2030 climate target plan’s impact assessment found methane will continue to be the EU’s dominant non-CO\textsubscript{2} greenhouse gas. It concluded that stepping up the level of ambition for reductions in greenhouse gases emissions to at least 55% by 2030 compared to 1990 would also require an accelerated effort to tackle methane emissions, with projections indicating a step up needed to 35% to 37% methane emission reductions by 2030 compared to 2005.

The Commission will also review the National Emission Reduction Commitments (NEC) Directive by 2025 and, as part of this review, explore the possible inclusion of methane among the regulated pollutants.

In line with the 2030 Climate Target Plan the Effort Sharing Regulation (ESR) (which covers methane emissions from agriculture), will now be reviewed to reflect the increased carbon reduction target providing for increased incentives to reduce methane emissions.

The stringent emission control scenarios in our analysis foresee a reduction of 2.4 to 3.7 Gt annually in 2030 and 2.9 to 5.1 Gt in 2050 whereas the high emission scenarios lead to an emission increase of 1.6 to 3.6 Gt CO\textsubscript{2}e in 2030 (3.1 to 8.6 Gt in 2050). The UNEP Emission Gap Report 2017 (UNEP, 2017) indicates that, in order to meet the year 2100 2\textdegree\,C target, by 2030, additionally to the NDCs 11 to 13.5 GtCO\textsubscript{2}e emission reductions have to be achieved. The stringent emission control scenarios in our analysis foresee a reduction of -2 to -4 GtCO\textsubscript{2}e relative to the GECO INDC scenario by 2030, hence contributing 15 to 33% to the required emission gap closure. In contrast, under non-ambitious CH\textsubscript{4} mitigation scenarios, the total mitigation effort needed for reducing emissions of other GHGs would increase by 2 to 4 Gt CO\textsubscript{2}e.

“Absolute reduction target of at least 45% reduction in methane emissions by 2025 and 60% to 75% by 2030... are realistic and achievable targets, especially in a sector where technology and financing are largely available, and innovation supports even larger reductions... Reductions across the oil and gas industry in line with the Global Methane Alliance could reduce global emissions by 6 gigatons CO\textsubscript{2}e by 2030. According to the UNEP Emissions Gap Report 2019, this would achieve between 20%-50% of the emissions required to limit climate warming to 2-degrees.”. See also Nisbet E. G., et al. (2020) Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement, Rev. Geophys., 58(e2019RG000675): 1–51, 1 (“Many methane mitigation options offer cost-effective approaches to cut global warming and bring the amount of methane in the air back to a pathway that is consistent with the aims of the Paris Agreement.”).

“About 50 per cent of both methane and black carbon emission reductions can be achieved through measures that result in net cost savings that are on average 1.6 to 5.7 times greater than the cost of abatement.”. See also United Nations Environment Programme (2011) Near-Term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers.
savings (as a global average) over their technical lifetime. The savings occur when initial investments are offset by subsequent cost savings from, for example, reduced fuel use or utilization of recovered methane. A further third of the total methane emission reduction could be addressed at relatively moderate costs.”).

130 United States Office of Management and Budget (2021) Budget of the U.S. Government: Fiscal Year 2022, The White House: Washington D.C., 1–74, 22 (“The Budget also proposes $485 million to support other multilateral climate initiatives, including $100 million for international climate adaptation programs.”). See also United States Department of State (2021) Congressional Budget Justification: Department of State, Foreign Operations, and Related Program, Fiscal Year 2022, Washington D.C., 1–168, 124, 125 (“Clean Technology Fund (CTF): $300.0 million for a contribution to the CTF, of which up to $270.0 million may be used for the subsidy cost of a loan…. Multilateral Climate Change Adaptation Funds: The Budget also includes $100 million for the Department of State to make contributions to multilateral climate adaptation funds.”); “Montreal Protocol Multilateral Fund ($64 million): The request doubles U.S. funding for the Multilateral Fund for the Implementation of the Montreal Protocol (MLF).”); and U.S. Environmental Protection Agency (2021) Fiscal Year 2022, Justification of Appropriation Estimates for the Committee on Appropriations, EPA-190-R-21-002, 160 (See FY 2022 Pres. Budget request for the Multilateral Fund: $18,000.0 (Dollars in Thousands)).

131 Jackson R. B., et al. (2020) Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources, ENVIRON. RES. LETT. 15(071002): 1–7, 6 (“Increased emissions from both the agriculture and waste sector and the fossil fuel sector are likely the dominant cause of this global increase (figures 1 and 4), highlighting the need for stronger mitigation in both areas. Our analysis also highlights emission increases in agriculture, waste, and fossil fuel sectors from southern and southeastern Asia, including China, as well as increases in the fossil fuel sector in the United States (figure 4). In contrast, Europe is the only continent in which methane emissions appear to be decreasing. While changes in the sink of methane from atmospheric or soil uptake remains possible (Turner et al 2019), atmospheric chemistry and land-surface models suggest the timescales for sink responses are too slow to explain most of the increased methane in the atmosphere in recent years. Climate policies overall, where present for methane mitigation, have yet to alter substantially the global emissions trajectory to date.”).

132 Clean Air Task Force, Oil and Gas Mitigation Program (last accessed 5 February 2021) (“Fortunately, most leaks are straightforward to repair and fixing leaks is paid for by the value of the gas that is saved by repairing them”). Further, finding leaks has become efficient with modern technology. The standard approach today is to use special cameras that can detect infrared light (think of night-vision goggles) which are tuned to make methane, which is invisible to our eyes, visible. They allow inspectors to directly image leaking gas in real time, with the ability to inspect entire components (not just connections and other areas most likely to leak) and pinpoint the precise source, making repair more straightforward. And, technology promises to make this process even more efficient (and cheaper) over the coming years. These technologies can be utilized to reduce harmful leak emissions, by using regular inspections as the lynchpin of rigorous “leak detection and repair” (LDAR) programs. These programs require operators to regularly survey all of their facilities for leaks and improper emissions, and repair all the leaks they identify in a reasonable time. For example, California requires operators to survey all sites four times a year. Colorado has a different approach, requiring operators of the largest sites to survey them monthly, but requiring less frequent inspections for sites with smaller potential emissions.”).

133 Clean Air Task Force, Oil and Gas Mitigation Program (last accessed 5 February 2021) (Listing pneumatic equipment venting, compressor seal venting, tank venting, well completion venting, oil well venting and flaring, and dehydrator venting as sources of the “biggest mitigation opportunities.”).

134 Clean Air Task Force, Oil and Gas Mitigation Program (last accessed 5 February 2021) (“Venting is even more harmful than flaring, since methane warms the climate so powerfully, and VOC and toxic pollutants are released unabated. Venting of this gas should be prohibited in all cases as an absolutely unnecessary source of harmful air pollution. There are numerous lowcost (and usually profitable) ways to utilize natural gas from oil wells. Flaring should be a last resort: only in the most extreme cases should oil producers be allowed to flare gas, and it should be strictly a temporary measure. Rules prohibiting venting of natural gas can easily reduce emissions by 95 percent.”).

135 Clean Air Task Force, Oil and Gas Mitigation Program (last accessed 5 February 2021) (“Operators often vent and flare natural gas at oil wells. This waste occurs when oil producers, driven by the rush to sell oil, simply dispose of the gas from producing oil wells instead of building infrastructure (such as pipelines) to capture gas as soon as production begins. (In some cases, pipelines are never built and all of the gas the well produces over its lifetime is wasted in this way, as can be seen in sales records for individual wells available from state regulators.) While a substantial portion of this gas is flared off—wasting
energy and producing large amounts of carbon dioxide and other pollutants—some is just dumped into the air, or vented. Even in cases where a gas pipeline is not connected, there are a variety of other technologies that operators can use to reduce associated gas flaring at oil wells. Venting is even more harmful than flaring, since methane warms the climate so powerfully, and VOC and toxic pollutants are released unabated. Venting of this gas should be prohibited in all cases as an absolutely unnecessary source of harmful air pollution. There are numerous lowcost (and usually profitable) ways to utilize natural gas from oil wells. Flaring should be a last resort: only in the most extreme cases should oil producers be allowed to flare gas, and it should be strictly a temporary measure. Rules prohibiting venting of natural gas can easily reduce emissions by 95 percent.

See also World Bank, Zero Routine Flaring by 2030 (last accessed 4 February 2021) (“This “Zero Routine Flaring by 2030” initiative (the Initiative), introduced by the World Bank, brings together governments, oil companies, and development institutions who recognize the flaring situation described above is unsustainable from a resource management and environmental perspective, and who agree to cooperate to eliminate routine flaring no later than 2030.”).

136 United States Climate Alliance (2018) From SLCP Challenge to Action: A Roadmap for Reducing Short-Lived Climate Pollutants to Meet the Goals of the Paris Agreement, 13 (“Actions to improve manure management and to reduce methane from enteric fermentation have the potential to significantly reduce agricultural methane emissions across U.S. Climate Alliance states. Improving manure storage and handling, composting manure, utilizing pasture-based systems, or installing anaerobic digesters significantly reduces methane from manure management on dairy, swine, and other livestock operations. These practices may reduce methane from manure management by as much as 70 percent in U.S. Climate Alliance states (Appendix A) and can help improve soil quality and fertility, reduce water use and increase water quality, reduce odors, and decrease the need for synthetic fertilizers and associated greenhouse gas emissions. Promising technologies are also emerging that may cut methane emissions from enteric fermentation by 30 percent or more (Appendix A). Developing strategies that work for farmers and surrounding communities can significantly reduce methane emissions, increase and diversify farm revenues, and support water quality and other environmental benefits.”). See also Höglund-Isaksson L., Gómez-Sanabria A., Klimestone Z., Rafaj P., & Schöpp W. (2020) Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe—results from the GAINS model, Environ. Res. Comm. 2(025004): 1–21, 13–14 (“The technical abatement potential for agricultural sources is assessed at 21 percent below baseline emissions in year 2050. This includes relatively limited abatement potentials for livestock of 12 percent due to applicability limitations (see section S3.4. in the SI for details). Large farms with more than 100 LSU contribute about a third of global CH4 emissions from livestock and for this group we find it technically feasible to reduce emissions by just over 30 percent below baseline emissions in year 2050 (see figures S6–2 in the SI). The available options include reduction of enteric fermentation emissions through animal feed changes (Gerber et al 2013, Hristov et al 2013) combined with implementation of breeding schemes that simultaneously target genetic traits for improved productivity and enhanced animal health/longevity and fertility. Increased productivity reduces system emissions by enabling the production of the same amount of milk using fewer animals. The dual objective in breeding schemes is important as a one-eyed focus on increased productivity leads to deteriorating animal health and fertility and a risk that system emissions increase due to a need to keep a larger fraction of unproductive replacement animals in the stock (Lovett et al 2006, Berglund 2008, Bell et al 2011). The enteric fermentation options are considered economically feasible for commercial/industrial farms with more than 100 LSU but not for smaller- and medium- sized farms. Breeding schemes are assumed to deliver impacts on emissions only after 20 years and feed changes are assumed applicable only while animals are housed indoor. Emissions from manure management can be reduced through treatment of manure in anaerobic digesters (ADs) with biogas recovery. To be efficient from both an economic and environmental point of view, a certain scale is needed to accommodate both the fixed investment of the AD plant and the time farmers spend carefully attending to and maintaining the process (for details see section 3.3.1.3 in Höglund-Isaksson et al 2018).”) and Borgonovo F., et al. (2019) Improving the sustainability of dairy slurry with a commercial additive treatment, Sustainability 11(4988): 1–14, 8 (“N2O, CO2, and CH4 emissions, from the treated slurry, were respectively 100%, 22.9% and 21.5% lower than the control at T4 when the emission peaks were recorded.”).

138 United States Climate Alliance (2018) From SLCP Challenge to Action: A Roadmap for Reducing Short-Lived Climate Pollutants to Meet the Goals of the Paris Agreement, 15 (“Significant opportunities for reducing methane emissions from landfills and capturing value can be seized by reducing food loss and waste, diverting organic waste to beneficial uses, and improving landfill management. These and other actions collectively could reduce methane emissions from...
waste by an estimated 40-50 percent by 2030 (Appendix A). Such efforts could add value in our states by reducing emissions of volatile organic compounds and toxic air contaminants from landfills, recovering healthy food for human consumption in food insecure communities, supporting healthy soils and agriculture, generating clean energy and displacing fossil fuel consumption, and providing economic opportunities across these diverse sectors. Many of these benefits will accrue in low-income and disadvantaged communities.”

139 Miller A. S., Zaelke D., & Andersen S. O. (2021) RESETING OUR FUTURE: CUT SUPER CLIMATE POLLUTANTS NOW! THE OZONE TREATY’S URGENT LESSONS FOR SPEEDING UP CLIMATE ACTION, John Hunt Publishing: Alresford, United Kingdom, 95 (“A global methane agreement would start with a broad “framework agreement” that defines the problem, sets policy goals, and establishes basic rules and procedures for Parties to follow when developing prescriptive standards and creating international institutions or other mechanisms for economic, technical, and other forms of support.”)

140 Smieszek M. (14 June 2021) US-Russia cooperation on an Arctic methane agreement could improve relations — and slow climate change, ARCTIC TODAY. See also Taraska G. & Clouser P. (2014) How to slow near-term Arctic and global warming, CENTER FOR AMERICAN PROGRESS.

141 The Climate & Clean Air Coalition to Reduce Short-Lived Climate Pollutants (The CCAC identifies solutions to reduce SLCP emissions, conducts relevant scientific research, and promotes policy development. It is the only institution focusing solely on SLCP mitigation, although it does not have any regulatory authority.).

142 United Nations Environment Programme & World Meteorological Organization (2011) INTEGRATED ASSESSMENT OF BLACK CARBON AND TROPOSPHERIC OZONE, 193, 201 (“Implementing all measures could avoid 2.4 million premature deaths (within a range of 0.7–4.6 million) associated with reductions in PM2.5, associated with 5.3–37.4 million years of life lost (YLL), based on the 2030 population.”; “Total global production gains of all crops ranges between 30 and 140 million tonnes (model mean: 52 million tonnes). The annual economic gains for all four crops in all regions ranges between US$4billion and US$33 billion, of which US$2–28 billion in Asia.”).

143 California Air Resources Board (2017) How California is Giving Soot the Boot!, Research Synthesis #17-01 (“California’s clean air rules reduced black carbon emissions by 90% since the 1960s, providing immediate climate and health benefits. Ongoing efforts will cut the remaining amount in half by 2030.”).

144 Sand M., Berntsen T. K., Seland Ø., & Kristjánsson J. E. (2013) Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes, J. GEOPHYS. RES. 118(14): 7788–7798, 7788 (“The climate model includes a snow model to simulate the climate effect of BC deposited on snow. We find that BC emitted within the Arctic has an almost five times larger Arctic surface temperature response (per unit of emitted mass) compared to emissions at midlatitudes. Especially during winter, BC emitted in North-Eurasia is transported into the high Arctic at low altitudes. A large fraction of the surface temperature response from BC is due to increased absorption when BC is deposited on snow and sea ice with associated feedbacks.”). See also Stohl A., Klimont Z., Eckhardt S., Kupiainen K., Shevchenko V. P., Kopeitkin V. M., & Novigatsky A. N. (2013) Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions, ATMOS. CHEM. PHYS. 13(17): 8833–8855, 8848 (Fig. 9. Time series of measured EBC and carbon monoxide as well as modeled BC split into different source categories for the Zeppelin station for the period 12 February until 4 March 2010.).

145 Qian Y., Yasunari T. J., Doherty S. J., Flanner M. G., Lau W. K. M., Ming J., Wang H., Wang M., Warren S. G., & Zhang R. (2014) Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact, ADV. ATMOS. SCI. 32: 64–91, 64 (“Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.”). See also Arctic Monitoring and Assessment Programme (2017) ADAPTATION ACTIONS FOR A CHANGING ARCTIC: PERSPECTIVES FROM THE BARENTS AREA, 72 (“Highly reflective surfaces, such as snow
and ice in the Arctic increase light absorption by BC particles in the atmosphere. BC also absorbs light after deposition onto (and then into) snow and ice, where it accelerates the melt process (Pedersen et al., 2015). BC has made an important contribution to the observed rise in Arctic surface temperature through the 20th century (although carbon dioxide is still the major factor driving the rise in Arctic temperature) (Quinn et al., 2008; Koch et al., 2011; AMAP, 2015a). It may be technically possible to reduce global anthropogenic BC emissions by up to 75% by 2030 (Shindell et al., 2012; AMAP, 2015a; Stohl et al., 2015). As well as helping to slow warming, BC emission reductions would also have significant health benefits (Anenberg et al., 2012; Shindell et al., 2012).""); International Energy Agency (2016) WORLD ENERGY OUTLOOK SPECIAL REPORT: ENERGY AND AIR POLLUTION, 115 ("Two areas of clear cross-benefit (for air quality and climate change) are actions to reduce emissions of black carbon, a major component of PM, and of methane (Box 3.4). Black carbon – emitted due to incomplete combustion, particularly from household biomass stoves and diesel vehicles – affects the climate in multiple ways. It absorbs incoming sunlight, leading to warming in the atmosphere, settles on the ground accelerating the melting of Arctic and alpine ice and, along with other pollutants that form aerosols, it affects the formation of clouds, so having a knock-on influence on increased warming."); and World Bank & International Cryosphere Climate Initiative (2013) ON THIN ICE: HOW CUTTING POLLUTION CAN SLOW WARMING AND SAVE LIVES, 2 ("Climate benefits for cryosphere regions from black carbon reductions carry less uncertainty than they would in other parts of the globe and are sometimes very large. This is because emissions from sources that emit black carbon—even with other pollutants—almost always lead to warming over reflective ice and snow.").

146 Comer B., Osipova L., Georgeff E., & Mao X. (2020) The International Maritime Organization’s proposed arctic heavy fuel oil ban: likely impacts and opportunities for improvement, White Paper, International Council on Clean Transportation, 1 ("In February 2020, delegates at the seventh session of the United Nations International Maritime Organization’s (IMO) Pollution Prevention and Response Sub-Committee (PPR 7) agreed on draft amendments to the International Convention for the Prevention of Pollution from Ships (MARPOL) that would ban the carriage and use of heavy fuel oil (HFO) as fuel in Arctic waters beginning on July 1, 2024 (IMO Secretariat, 2020). If it were comprehensive, such a ban would dramatically reduce the potential for HFO spills and, in the likely cases where ships that stop using HFO switch to distillates, reduce the amount of black carbon (BC) they emit (Comer, Olmer, Mao, Roy, & Rutherford, 2017a). However, the text of the ban as currently proposed includes exemptions and waivers that would allow HFO to be carried and used in the Arctic until 2029. As proposed, the ban would enter into force for some ships on July 1, 2024, and implementation would be delayed for others. Ships with certain fuel tank protections, where the fuel tank is separated from the outer hull of the ship by at least 76 centimeters (cm), would be exempt until July 1, 2029. Additionally, countries with a coastline that borders IMO’s definition of Arctic waters can waive the HFO ban’s requirements until July 1, 2029 for ships that fly their flag when those ships are in waters subject to their sovereignty or jurisdiction."). See also Farand C. (3 September 2020) Loopholes in Arctic heavy fuel oil ban defer action to the end of the decade, CLIMATE HOME NEWS ("Under draft plans being negotiated at the International Maritime Organisation (IMO) – the UN body responsible for international shipping – restrictions on heavy fuel oil (HFO), a dirty fuel which propels most of marine transport, would come into effect in July 2024. But a host of exemptions and waivers would allow most ships using and carrying HFO to continue to pollute Arctic waters until 2029.").

147 Comer B., Osipova L., Georgeff E., & Mao X. (2020) The International Maritime Organization’s proposed arctic heavy fuel oil ban: likely impacts and opportunities for improvement, White Paper, International Council on Clean Transportation, 2–3 ("HFO has already been banned in the Antarctic since 2011, without any exemptions or waivers. In the Arctic, defined by the IMO’s MARPOL Convention as a neat circle below 60°S latitude, ships are not only forbidden from using HFO and carrying HFO in their fuel tanks, they cannot even carry HFO as cargo or ballast. There is little commercial shipping activity in the Antarctic region, and this made the decision less contentious. The Arctic, meanwhile, has substantial amounts of commercial shipping activity, including fishing and the transport of oil, gas, and minerals from the region. The carriage and use of HFO is especially common for oil tankers, general cargo ships, and bulk carriers in the region, as we will show later in this analysis. The Arctic HFO ban, as currently proposed, would start to apply on July 1, 2024 and would forbid using or carrying HFO as fuel, but would allow HFO cargoes to be transported. In addition to the cargo exemption, the text of the HFO ban allows for exemptions and waivers, as follows."). See also Farand C. (3 September 2020) Loopholes in Arctic heavy fuel oil ban defer action to the end of the decade, CLIMATE HOME NEWS ("Burning and carrying HFO has been banned in Antarctic waters since 2011, but plans for similar restrictions in the resource-rich Arctic have met with resistance. Russia, which could benefit from the opening of more shipping routes in the region as Arctic sea ice melts, is one of the most vocal opponents.").

148 Comer B., Osipova L., Georgeff E., & Mao X. (2020) The International Maritime Organization’s proposed arctic heavy fuel oil ban: likely impacts and opportunities for improvement, White Paper, International Council on Clean Transportation, 10–11, 19 ("As shown in Figure 8, had the proposed HFO ban been in place in 2019, it would have banned just 30% of HFO carried as fuel and 16% of the HFO used by ships in the Arctic. Total BC emissions in the Arctic would have fallen by only 5% because the majority of HFO use would have been allowed by virtue of exemptions or waivers. Of the 700 HFO-fueled
ships in the Arctic in 2019, 151, or 22% of the fleet, would have been exempt. Of these, 18 would have been eligible for a waiver had they not already been exempt. The flag state with the most exempt ships was Panama, with 31 ships, followed by Marshall Islands with 27, Liberia with 15, Russia with 11, and the Netherlands with 11. Other flag states had fewer than 10 ships exempt. An additional 366 ships, or 52% of the HFO-fueled fleet, would have been eligible for a waiver, including 325 ships flagged to Russia, 20 to Canada, 10 to Norway, 10 to Denmark, and one to the United States. Together, exemptions and waivers would have allowed 74% of the HFO-fueled fleet, by number of ships, to continue to use HFO in the Arctic.”

Comer B., Osipova L., Georgeff E., & Mao X. (2020) The International Maritime Organization’s proposed arctic heavy fuel oil ban: likely impacts and opportunities for improvement, White Paper, International Council on Clean Transportation, 19 (“Moving down Figures 15, 16, and 17, the top bars show the HFO ban without exemptions or waivers, in which case 100% of HFO carriage and use would be banned and BC emissions would decrease by 30%. The second bars show that disallowing exemptions and limiting waivers only to IW results in banning 75% of HFO carriage and 82% of HFO use, which would cut BC emissions by 24%. The third bar in the figures shows the impact of allowing waivers in both IW and TS. In this case, 70% of HFO carriage and 75% of HFO use would be banned, and this would cut BC emissions by 22%. Figure 20 shows the location and amount of HFO used that would have been allowed in 2019 under this alternative. Comparing this with Figure 19 shows that HFO remains available for use near shore; this could allow for domestic transportation while banning HFO in the offshore areas. This alternative may strike a balance between allowing HFO to be carried and used for domestic shipping and community resupply while banning a significant amount of HFO carriage and use. However, an HFO spill close to shore would result in larger direct impacts to Arctic coastlines and coastal communities. The most protective alternative is a ban without exemptions and waivers.”

Guzman J. (1 December 2020) Every major US bank has now come out against Arctic drilling, The Hill.

Climate & Clean Air Coalition, Black Carbon (last accessed 8 February 2021) (Listing solutions to reach 70% reduction in black carbon by 2030).

World Bank (2014) Reducing Black Carbon Emissions From Diesel Vehicles: Impacts, Control Strategies, and Cost-Benefit Analysis, 17 (“A vehicle emissions reduction program often focuses on three areas: new vehicles, fuels, and the in- use fleet. In some countries it may make sense to start with the in-use fleet and transportation demand management. In certain cases, fiscal policies can be effective tools to complement mandatory regulatory requirements. The order or priority in approach should be dictated by the baseline technology, the rate of growth of the fleet, the feasibility of available options, the institutional capacity to support the intervention, and other local considerations. Successful strategies tend to take a holistic approach that integrates all maximum feasible and cost-effective emissions reduction strategies.”). See also Bond T. C., et al. (2013) Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos. 118(11): 5380–5552, 5525 (“Diesel sources of BC appear to offer the most promising mitigation opportunities in terms of near-term forcing and maturity of technology and delivery programs. Although some options, such as diesel retrofits, may be costly relative to other BC mitigation options, they may also deliver significant health benefits. Mitigating emissions from residential solid fuels may yield a reduction in net positive forcing. The near-term net effect remains uncertain because of uncertain knowledge regarding the impacts of co-emitted species on clouds, but longer-term forcing by co-emitted species interacting with the methane budget is positive. Furthermore, the evolution of feasibility is still in the emerging phase for these sources.”).
Operators often vent and flare natural gas at oil wells. This waste occurs when oil producers, driven by the rush to sell oil, simply dispose of the gas from producing oil wells instead of building infrastructure (such as pipelines) to capture gas as soon as production begins. (In some cases, pipelines are never built and all of the gas the well produces over its lifetime is wasted in this way, as can be seen in sales records for individual wells available from state regulators.) While a substantial portion of this gas is flared off—wasting energy and producing large amounts of carbon dioxide and other pollutants—some is just dumped into the air, or vented. Even in cases where a gas pipeline is not connected, there are a variety of other technologies that operators can use to reduce associated gas flaring at oil wells. Venting is even more harmful than flaring, since methane warms the climate so powerfully, and VOC and toxic pollutants are released unabated. Venting of this gas should be prohibited in all cases as an absolutely unnecessary source of harmful air pollution. There are numerous low-cost (and usually profitable) ways to utilize natural gas from oil wells. Flaring should be a last resort: only in the most extreme cases should oil producers be allowed to flare gas, and it should be strictly a temporary measure. Rules prohibiting venting of natural gas can easily reduce emissions by 95 percent."

See also The World Bank, Zero Routine Flaring by 2030 (last accessed 4 February 2021) (“This “Zero Routine Flaring by 2030” initiative (the Initiative), introduced by the World Bank, brings together governments, oil companies, and development institutions who recognize the flaring situation described above is unsustainable from a resource management and environmental perspective, and who agree to cooperate to eliminate routine flaring no later than 2030.”); and Saunier S., Bergauer M.-A., & Isakova I. (2019) Best Available Techniques Economically Achievable to Address Black Carbon from Gas Flaring. EU Action on Black Carbon in the Arctic - Technical Report 3 (“Although the effectiveness of BATEA largely depends on site-specific economic and technical parameters, they have a substantial potential to achieve meaningful and measurable environmental and financial benefits. Quantifying resultant reductions in BC emissions as a result of mitigation strategies remains challenging, however, implementing BATEA should still be considered a best practice for reducing flaring-associated BC emissions. Along with other newly available technologies, use of the BATEA described herein will support existing efforts to mitigate short-term climate change, as well as address other energy, environmental, and safety issues that are likely to result from gas flaring in Arctic regions.”).

International Energy Agency, International Renewable Energy Agency, United Nations Statistics Division, World Bank, & World Health Organization (2020) Tracking SDG 7: The Energy Progress Report, 6 (“The share of the global population with access to clean fuels and technologies for cooking increased from 56 percent in 2010 (uncertainty interval 52–61 percent) to 63 percent in 2018 (56–68), leaving approximately 2.8 billion people without access.1 That number has been largely unchanged over the past two decades owing to population growth outpacing the number of people gaining access to clean cooking solutions.”). Cleaner cookstoves must also be reliable for interventions to succeed. See Ramanathan T., Molin Valdés H., & Coldrey O. (7 September 2020) Reliability matters: Achieving affordable, reliable, sustainable and modern energy for all by 2030. Sustainable Energy for All (“A cooking solution (improved biomass, gas, electric, etc.) is reliable when it offers a household the predictable ability to cleanly cook essential foods on a daily basis and to continue to do so into the foreseeable future. Reliability is a holistic concept that encompasses not only the verifiability of emissions reduction, but also accounts for end users’ needs (e.g. usability of design, long-term durability, affordability, and strength of supply chain). Compromising any of those factors can mean that even if a cooking solution is perceived as beneficial, it may not be well suited and will therefore ultimately not meet its targeted goal of cleaner air.”).

Comer B., Osipova L., Georgeff E., & Mao X. (2020) The International Maritime Organization’s proposed arctic heavy fuel oil ban: likely impacts and opportunities for improvement, White Paper, International Council on Clean Transportation, 1 (“In February 2020, delegates at the seventh session of the United Nations International Maritime Organization’s (IMO) Pollution Prevention and Response Sub-Committee (PPR 7) agreed on draft amendments to the International Convention for the Prevention of Pollution from Ships (MARPOL) that would ban the carriage and use of heavy fuel oil (HFO) as fuel in Arctic waters beginning on July 1, 2024 (IMO Secretariat, 2020). If it were comprehensive, such a ban would dramatically reduce the potential for HFO spills and, in the likely cases where ships that stop using HFO switch to distillates, reduce the amount of black carbon (BC) they emit (Comer, Olmer, Mao, Roy, & Rutherford, 2017a). However, the text of the ban as currently proposed includes exemptions and waivers that would allow HFO to be carried and used in the Arctic until 2029. As proposed, the ban would enter into force for some ships on July 1, 2024, and implementation would be delayed for others. Ships with certain fuel tank protections, where the fuel tank is separated from the outer hull of the ship by at least 76 centimeters (cm), would be exempt until July 1, 2029. Additionally, countries with a coastline that borders IMO’s definition of Arctic waters can waive the HFO ban’s requirements until July 1, 2029 for ships that fly their flag when those ships are in waters subject to their sovereignty or jurisdiction.”). See also Farand C. (3 September 2020) Loopholes in Arctic heavy fuel oil ban defer action to the end of the decade, CLIMATE HOME NEWS (“Under draft plans being negotiated at the International Maritime Organisation (IMO) – the UN body responsible for international shipping – restrictions on heavy fuel oil (HFO), a dirty fuel
which propsel most of marine transport, would come into effect in July 2024. But a host of exemptions and waivers would allow most ships using and carrying HFO to continue to pollute Arctic waters until 2029.”).

161 1999 Protocol to Abate Acidification, Eutrophication and Ground-Level Ozone (Gothenburg Protocol). Decision 2012/8: Adoption of guidance document on control techniques for emissions of sulphur, nitrogen oxides, volatile organic compounds and particulate matter (including PM$_{10}$, PM$_{2.5}$, and black carbon) from stationary sources. See also Matthews B. & Paunu V.-V. (2019) Review of Reporting Systems for National Black Carbon Emissions Inventories, EU Action on Black Carbon in the Arctic - Technical Report 2, 1–2 (“Emissions reporting systems are thus in need of further improvement. In evaluating needs for improvement, the EU Action on Black Carbon in the Arctic review identified the following priority areas . . . 4. Enhanced cooperation between CLRTAP and the Arctic Council to expand and harmonise black carbon emissions reporting by countries whose black carbon emissions impact the Arctic.”). Compare with Expert Group on Black Carbon and Methane (2019) Summary of Progress and Recommendations, Arctic Council Secretariat, 32, Table 5 (Showing US with 9.5bcm of flaring based on World Bank satellite observations); with Energy Information Administration, Flaring and Venting Data (last accessed 5 February 2021) (showing combined flaring and venting volumes of 255bcf for 2017).

162 Xu Y., Zaelke D., Velders G. J. M., & Ramanathan V. (2013) The role of HFCs in mitigating 21st century climate change, ATMOS. CHEM. & PHYS. 13(12): 6083–6089, 6083 (“Here we show that avoiding production and use of high-GWP (global warming potential) HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5 °C warming by the end of the century. This combine mitigation on SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO$_2$-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2 °C warming threshold during this century.”).

163 World Meteorological Organization, United Nations Environment Programme, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, & European Commission (2018) Executive Summary: Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, ES-22 (“The Kigali Amendment is projected to reduce future global average warming in 2100 due to HFCs from a baseline of 0.3-0.5 °C to less than 0.1 °C (Figure ES-4). If the global production of HFCs were to cease in 2020, the surface temperature contribution of the HFC emissions would stay below 0.02 °C for the whole 21st century. The magnitude of the avoided temperature increase, due to the provisions of the Kigali Amendment (0.2 to 0.4 °C) is substantial in the context of the 2015 UNFCCC Paris Agreement, which aims to limit global temperature rise to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C.”); 2.40–2.41 (“With the Kigali Amendment and national and regional regulations, the future production and consumption of HFCs is strongly limited (Table 2-1). Under the provisions of the Amendment, the contribution of HFCs to the global average surface temperature is projected to reach a maximum around 2060, after which it slowly decreases to about 0.06°C by 2100 (Figure 2-20). In contrast, the surface temperature contribution from HFCs in the baseline scenario is 0.3–0.5°C in 2100 (based on Xu et al., 2013 and Velders et al., 2015). The difference in projected temperatures is relevant in the context of the 2015 UNFCCC Paris Agreement, which aims to limit the global temperature increase to well below 2°C relative to pre-industrial levels.”).

165 Dreyfus G., Borgford-Parnell N., Christensen J., Fahey D. W., Motherway B., Peters T., Picolotti R., Shah N., & Xu Y. (2020) ASSESSMENT OF CLIMATE AND DEVELOPMENT BENEFITS OF EFFICIENT AND CLIMATE-FRIENDLY COOLING, Molina M. & Zaelke D., Steering Committee Co-Chairs, xii (“Transitioning to high efficiency cooling equipment can more than double the climate benefits of the HFC phasedown in the near-term by reducing emissions of carbon dioxide (CO$_2$) and black carbon from the electricity and diesel used to run air conditioners and other cooling equipment. This also will provide significant economic, health, and development co-benefits. . . Robust policies to promote the use of best technologies currently available for efficient and climate-friendly cooling have the potential to reduce climate emissions from the stationary air conditioning and refrigeration sectors by 130–260 GtCO$_2$e by 2050, and 210–460 GtCO$_2$e by 2060. A quarter of this mitigation is from phasing down HFCs and switching to alternatives with low global warming potential (GWP), while three-quarters is from improving energy efficiency of cooling equipment and reducing electricity demand, which helps achieve a more rapid transition to carbon free electricity worldwide. The mobile air conditioning sector, where energy consumption is expected to nearly triple

166 Portmann R. W., Daniel J. S., & Ravishankara A. R. (2012) Stratospheric Ozone Depletion Due to Nitrous Oxide: Influences of Other Gases, PHILOS. TRANS. R SOC. LOND. B BIOL. SCI. 367(1593): 1256–1264, 1262 (“By 2008, anthropogenic N₂O was the most significant ozone-destroying compound being emitted. Owing to the phase-out of anthropogenic halocarbon emissions, it is likely to become even more dominant in the near future.”). See also Porter I. (2019) Mitigation of Nitrous Oxide Emissions, Presentation at 31st Meeting of the Parties to the Montreal Protocol (“By 2050, lack of controls on N₂O will undo 25% of the benefit gained by the Montreal Protocol to reducing ODS from the ozone layer.”).

167 World Meteorological Organization, United Nations Environment Programme, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, & European Commission (2018) Executive Summary: Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, 1-61. (“As a result of this growth, the contribution of N₂O to radiative forcing has continued to rise, reaching 0.19 W m⁻² in 2016, approximately 10% that of CO₂.”).

169 Environmental Protection Agency (2012) Global Anthropogenic Non-CO₂ Greenhouse Gas Emissions: 1990–2030, 41 (“Between 1990 and 2005, N₂O emissions from production of nitric and adipic acid has decreased 37 percent, from 200 MtCO₂e to 126 MtCO₂e (see Table 4-2). Over this time period, production of nitric and adipic acid has increased. The decline in historical emissions is mostly due to widespread installation of abatement technologies in the adipic acid industry (Reimer et al, 1999). Most production capacity in these industries has been located in the OECD, but the proportion of emissions in the OECD has declined. In 1990, the OECD accounted for 83 percent of global N₂O emissions from this source, whereas the OECD is estimated to account for 68 percent of global emissions in 2005.”).

170 Environmental Protection Agency (2019) Global Non-CO₂ Greenhouse Gas Emission Projections & Mitigation: 2015–2050, 29 (“Taken together, the top 5 countries in terms of baseline emissions represent 85% of all potential global abatement in the source category in 2030. China alone represents 67% of total abatement potential, in part because of its high production capacity and lower adoption of emission controls relative to other large producers of nitric and adipic acid.”).

172 SOP, Save Our Planet (last accessed 8 February 2020).

173 Peterson C., El Mashad H. M., Zhao Y., Pan Y., & Mitloehner F. M. (2020) Effects of SOP Lagoon Additive on Gaseous Emissions from Stored Liquid Dairy Manure, SUSTAINABILITY 12: 1–17, 14–15 (“These studies seem to indicate that the applied HIGH dose of SOP Lagoon might decrease the number of methanogens that produce methane during the storage of manure as well as hydrolytic microorganisms and their excreted enzymes that biodegrade organic nitrogen into ammonium.”). See also Maris S. C., Capra F., Ardenti F., Chiordini M. E., Boselli R., Taskin E., Puglisi E., Bertora C., Poggianella L., Amaducci S., Tabaglio V., & Fiorini A. (2021) Reducing N Fertilization without Yield Penalties in Maize with a Commercially Available Seed Dressing, AGRONOMY 11(3): 407 (“[W]e concluded that under our experimental conditions SCM [SOP® COCUS MAIZE+] may be used for reducing N [nitrogen] input (-30%) and N₂O emissions (-23%), while contemporarily maintaining maize yield. Hence, SCM can be considered an available tool to improve agriculture’s alignment to the United Nation Sustainable Development Goals (UN SDGs) and to comply with Europe’s Farm to Fork strategy for reducing N-fertilizer inputs.”).
Arctic Council (2021) *Russian Chairmanship 2021-2023* (last accessed 29 June 2021) (“Taking into account the rapid climate change in the Arctic, most notably accompanied by degradation of permafrost and the icy gas hydrides emissions, the Russian Chairmanship will continue supporting efforts to mitigate the negative effects of climate change, increase adaptation of life activities and ensuring resilience to its consequences, preservation and restoration of the environment, sustainable use of natural resources, maintaining the health of the Arctic ecosystems, including marine environment, preserving biodiversity, in particular, the Arctic migratory birds. In the context of further development of the region it is important to take into account not only the vulnerability of the Arctic to climate change, but also its long-term contribution – due to its natural, energy and transport resources and solutions – in facilitating the transition to a low-emission economy and, accordingly, to the implementation of the goals of the Paris Agreement. Equally topical task is to promote the introduction of advanced sustainable innovative technologies into the transport sector, industry, infrastructure and energy, including the use of renewable energy sources to improve the standards of living of the Arctic inhabitants.”).

Smieszek M. (14 June 2021) *US-Russia cooperation on an Arctic methane agreement could improve relations — and slow climate change*, ARCTIC TODAY (“Data presented at the Arctic Council Ministerial meeting in Reykjavik shows that a voluntary commitment by Arctic states to reduce methane emissions has, up to now, achieved virtually nothing — despite technological readiness and related economic, health, and climate benefits. A new legally binding agreement on mitigating anthropogenic methane emissions from the Arctic might be a needed tool. With Russia now chairing the Arctic Council (and the EGBCM), along with the Biden’s administration renewed focus on addressing climate crisis in the Arctic and globally, and all Arctic states committed to goals of Paris Agreement, Russia and the United States could take a lead on that effort and bring it to a successful conclusion. Their recent actions and statements show that they pay attention to importance of reducing methane emissions to addressing climate change — in April, the U.S. Senate voted to reinstate Obama-era regulations on methane emissions and in the same month, Putin in his speech at the Leaders Summit on Climate organized by the White House, talked about a large potential that halving methane emissions could have for climate warming, even if he stayed short of pledging any concrete actions to address that… In the past, the Arctic Council served as a venue for successful negotiations of three legally binding agreements among Arctic states: on search and rescue (2011), on marine oil pollution preparedness and response (2013), and on enhancing international scientific collaboration in the Arctic (2017). In each of them, joint leadership by Russia and the United States was key. Moreover, through the council’s structure and its expert and working groups, Arctic states have already in place both an appropriate platform and the scientific and technological capacities to support negotiations on methane.”). See also Arctic Council (2021) *International cooperation in the Arctic* (last accessed 29 June 2021) (“On three occasions, the Arctic States have negotiated legally binding agreements under the auspices of the Arctic Council. These aim at enhancing international cooperation on issues related to maritime search and rescue, marine oil pollution, and Arctic scientific cooperation respectively.”).

Osho Z. (8 June 2021) *The Northern Sea Route Will Shorten Trade Journeys – and Augur Climate Disaster*, THE WIRE, SCIENCE (“Allowing commercial shipping through the Arctic will be nothing short of a climate disaster. Increased shipping means increased risk of oil spills, air pollution from fuel combustion, and accidents. Heavy fuel oil (HFO) is the most common shipping fuel in the Arctic, and its use produces black carbon – or soot – that can accelerate the rate at which Arctic ice is melting. Black carbon emissions from Arctic shipping alone grew by 85% from 2015 to 2019.”).

Centre for Climate Repair at Cambridge, *Marine Cloud Brightening MCB*, Research Themes, Restoring Broken Climate Systems (last accessed 16 July 2021) (“Several routes for refreezing are being developed. One involves the manipulation of sea ice to increase the overall rate of growth during the early winter. Two different approaches have been cited which have not received in-depth research: the breaking up of newly formed sea ice in the winter in order to increase the thickness of some areas whilst consequently exposing more sea water to cold air which could increase the overall rate of formation of ice whilst also providing zones of thicker ice which could potentially remain frozen over a complete summer; the spraying of seawater onto the top of ice, thereby causing more ice to form.”). See also Carnegie Climate Governance Initiative (2021) *Climate-Altering Approaches and the Arctic*, Policy Brief, 2nd ed. (discussing enhancing surface albedo and marine cloud brightening to slow Arctic warming); and Field L., Ivanova D., Bhattacharyya Ś., Mlaker V., Sholtz A., Decca R., Manzara A., Johnson D., Christodoulou E., Walter P., & Katuri K. (2018) *Increasing Arctic Sea Ice Albedo Using Localized Reversible Geoengineering*, EARTH’S FUTURE 6(6):882–901 (discussing testing hollow silica beads to enhance albedo of Arctic sea ice).

Jackson R. B., Solomon E. I., Canadell J. G., Cargnello M., & Field C. B. (2019) *Methane removal and atmospheric restoration*, NAT. SUSTAIN. 2: 436–438, 436 (“In contrast to negative emissions scenarios for CO2 that typically assume hundreds of billions of tonnes removed over decades and do not restore the atmosphere to preindustrial levels, methane concentrations could be restored to ~750 ppb by removing ~3.2 of the 5.3 Gt of CH4 currently in the atmosphere. Rather than capturing and storing the methane, the 3.2 Gt of CH4 could be oxidized to CO2, a thermodynamically favourable reaction…. In
total, the reaction would yield 8.2 additional Gt of atmospheric CO₂, equivalent to a few months of current industrial CO₂ emissions, but it would eliminate approximately one sixth of total radiative forcing. As a result, methane removal or conversion would strongly complement current CO₂ and CH₄ emissions-reduction activities. The reduction in short-term warming, attributable to methane’s high radiative forcing and relatively short lifetime, would also provide more time to adapt to warming from long-lived greenhouse gases such as CO₂ and N₂O.”). Klaus Lackner critiqued the Jackson et al. article in a published response, arguing that implementing zeolite mechanisms to facilitate CH₄ removal is not practical. Lackner noted CH₄ removal faces the challenge of extreme dilution in the atmosphere, so “the amount of air that would need to be moved [to facilitate CH₄ removal] would simply be too great” to be economically feasible. However, Lackner did note passive methods of CH₄ removal through the use of zeolites may still be a viable solution. Lackner further argues that N₂O may be a more worthy target for removal due to its long lifetime in the atmosphere. See Lackner K. S. (2020) Practical Constraints on Atmospheric Methane Removal, NAT. SUSTAIN. 3: 357. Jackson et al. published a response to Lackner, acknowledging his stature in the greenhouse gas removal field and his concerns about the feasibility and energy requirements of their proposed mechanism, offering additional explanation about alternative options for use of the captured methane instead of just converting it to CO₂ as suggested in the original study. See Jackson R. B., Solomon E. I., Canadell J. G., Cargnello M., Field C. B., & Abernethy S. (2020) Reply to: Practical constraints on atmospheric methane removal, NAT. SUSTAIN. 3: 358–359. Another study looking at removing non-CO₂ GHGs investigated the potential of using solar chimney power plants (SCPPs) with select photocatalysts (depending on what GHGs desired to be captured). While the SCPP serves as a source of renewable energy that could remove methane and nitrous oxide among other atmospheric pollutants, scaling up the prototype would require a massive amount of land area (roughly 23 times the size of the entire Beijing municipality) and a chimney stretching 1000–1500 m into the air, which limits how practical the existing technology may be. See de Richter R., Tingzhen M., Davies P., Wei L., & Caillol S. (2017) Removal of non-CO₂ greenhouse gases by large-scale atmospheric solar photocatalysis, PROG. ENERGY COMBUST. SCI. 60: 68–96.

179 Advanced Research Projects Agency-Energy (8 April 2021) Reducing Emissions of Methane Every Day of the Year, ARPA-E Programs (“Program Description: REMEDY (Reducing Emissions of Methane Every Day of the Year) is a three-year, $35 million research program to reduce methane emissions from three sources in the oil, gas, and coal value chains: 1) Exhaust from 50,000 natural gas-fired lean-burn engines. These engines are used to drive compressors, generate electricity, and increasingly repower ships. 2) The estimated 300,000 flares required for safe operation of oil and gas facilities. 3) Coal mine ventilation air methane (VAM) exhausted from 250 operating underground mines. These sources are responsible for at least 10% of U.S. anthropogenic methane emissions. Reducing emissions of methane, which has a high greenhouse gas warming potential, will ameliorate climate change.”).

180 Advanced Research Projects Agency-Energy (30 September 2020) Prevention and Abatement of Methane Emissions (“We’re open to all options — but specifically are looking for solutions that: Prevent methane emissions from anthropogenic activities. In other words, solutions which intervene before anthropogenic emissions escape to the atmosphere. Abate methane emissions at their source. Sources include vents, leaks, and exhaust stacks. Remove methane from the air. As mentioned above, methane only lasts about 9 years in the atmosphere. Nature is very good at getting rid of methane using reactions in the atmosphere and methanotrophs in the soil. Maybe we can learn from Nature, and help her out.”). See also Lewnard J. (16 November 2020) REMEDY – Reducing Emissions of Methane Every Day of the Year, ARPA-E Presentation, Slide 7 (“Example Potential Approaches, Not Intended to Limit or Direct... “Geo-engineering”: Accelerate tropospheric reactions; Accelerate soil/methanotroph reactions”).

181 Moomaw W. R., Masino S. A., & Faison E. K. (2019) Intact Forests in the Unites States: Proforestation Mitigates Climate Change and Serves the Greatest Good, Perspective, FRONT. FOR. GLOB. CHANGE 2(27): 1–10, 1 (“Climate change and loss of biodiversity are widely recognized as the foremost environmental challenges of our time. Forests annually sequester large quantities of atmospheric carbon dioxide (CO₂), and store carbon above and below ground for long periods of time. Intact forests—largely free from human intervention except primarily for trails and hazard removals—are the most carbon-dense and biodiverse terrestrial ecosystems, with additional benefits to society and the economy. ... The recent 1.5 Degree Warming Report by the Intergovernmental Panel on Climate Change identifies reforestation and afforestation as important strategies to increase negative emissions, but they face significant challenges: afforestation requires an enormous amount of additional land, and neither strategy can remove sufficient carbon by growing young trees during the critical next decade(s). In contrast, growing existing forests intact to their ecological potential—termed proforestation—is a more effective, immediate, and low-cost approach that could be mobilized across suitable forests of all types. Proforestation serves the greatest public good by maximizing co-benefits such as nature-based biological carbon sequestration and unparalleled ecosystem services such as biodiversity enhancement, water and air quality, flood and erosion control, public health benefits, low impact recreation, and scenic beauty.”); and World Wildlife Fund (2020) Living Planet Report 2020 – Bending the curve of biodiversity loss, Almond
The loss of forest percolation and the increase in water vapor and saturated water in the Amazon basin is recycled, and, therefore, simulations of Amazon deforestation typically generate 20–40% reductions in precipitation (78), lengthening of the dry season, and increases in summer temperatures (79) that would make it difficult for the forest to reestablish, and suggest the system may exhibit bistability. See also Staal A., Fetzer I., Wang-Erlandsson L., Bomsans J. H. C., Dekker S. C., van Nes E. H., Rockström J., & Tuinenburg O. A. (2020) Hysteresis of tropical forests in the 21st century, NAT. COMMUN. 11(4978): 1–8, 5 (“Whether the Amazon in particular is an important global ‘tipping element’ in the Earth system is a question of great scientific and societal interest.6,37 Despite our incomplete understanding of Amazon tipping, it is generally considered to be true that the forest’s role in the hydrological cycle is so large that deforestation and/or climate change may trigger a tipping point.2,36–38 More recently, the possibility of fire-induced tipping has also been suggested.5,6 Although fire occurs at a local scale, a considerable portion of the Amazon would be susceptible to this kind of tipping; b
n, warming and moisture concentration and the climate stabilizes."

See also Brienen R. J. W., et al. (2015) Long-term decline of the Amazon carbon sink, Nature 519(7543): 344–348, 344 (“While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times.”).

Duffy K. A., Schwalm C. R., Arcus V. L., Koch G. W., Liang L. L., & Schipper L. A. (2021) How close are we to the temperature tipping point of the terrestrial biosphere?, Sci. Adv. 7(3): eaay1052, 1 (“The temperature dependence of global photosynthesis and respiration determine land carbon sink strength. While the land sink currently mitigates ~30% of anthropogenic carbon emissions, it is unclear whether this ecosystem service will persist and, more specifically, what hard temperature limits, if any, regulate carbon uptake. Here, we use the largest continuous carbon flux monitoring network to construct the first observationally derived temperature response curves for global land carbon uptake. We show that the mean temperature of the warmest quarter (3-month period) passed the thermal maximum for photosynthesis during the past decade. At higher temperatures, respiration rates continue to rise in contrast to sharply declining rates of photosynthesis. Under business-as-usual emissions, this divergence elicits a near halving of the land sink strength by as early as 2040.”). See also Hubau W., et al. (2020) Asynchronous carbon sink saturation in African and Amazonian tropical forests, Nature 579: 80–87, 85 (“In summary, our results indicate that although intact tropical forests remain major stores of carbon and are key centres of biodiversity11, their ability to sequester additional carbon in trees is waning. In the 1990s intact tropical forests removed 17% of anthropogenic CO2 emissions. This declined to an estimated 6% in the 2010s, because the pan-tropical weighted average per unit area sink strength declined by 33%, forest area decreased by 19% and anthropogenic CO2 emissions increased by 46%. Although tropical forests are more immediately threatened by deforestation46 and degradation47, and the future carbon balance will also depend on secondary forest dynamics48 and forest restoration plans49, our analyses show that they are also affected by atmospheric chemistry and climatic changes. Given that the intact tropical forest carbon sink is set to end sooner than even the most pessimistic climate driven vegetation models predict4,5, our analyses suggest that climate change impacts in the tropics may become more severe than predicted. Furthermore, the carbon balance of intact tropical forests will only stabilize once CO2 concentrations and the climate stabilizes.”).

Duffy K. A., Schwalm C. R., Arcus V. L., Koch G. W., Liang L. L., & Schipper L. A. (2021) How close are we to the temperature tipping point of the terrestrial biosphere?, Sci. Adv. 7: 1–8, 3 (“This…calls into question the future viability of the land sink, along with Intended Nationally Determined Contributions (INDCs) within the Paris Climate Accord, as these rely heavily on land uptake of carbon to meet pledges. In contrast to Representative Concentration Pathway 8.5 (RCP8.5), warming associated with scenario RCP2.6 could allow for near-current levels of biosphere productivity, preserving the majority land carbon uptake (~10 to 30% loss.”).

Moomaw W. R., Masino S. A., & Faison E. K. (2019) Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good, Front. For. Glob. Change 2(27): 1–10, 1 (“The recent 1.5 Degree Warming Report by the Intergovernmental Panel on Climate Change identifies reforestation and afforestation as important strategies to increase negative emissions, but they face significant challenges: afforestation requires an enormous amount of additional land, and neither strategy can remove sufficient carbon by growing young trees during the critical next decade(s). In contrast, growing existing forests intact to their ecological potential—termed proforestation—is a more effective, immediate, and low-cost approach that could be mobilized across suitable forests of all types. Proforestation serves the greatest public good by maximizing co-benefits such as nature-based biological carbon sequestration and unparalleled ecosystem services such as biodiversity enhancement, water and air quality, flood and erosion control, public health benefits, low impact recreation, and scenic beauty.”).

United Nations Environment Programme & GRID-Arendal (2017) Smoke on Water: Countering Global Threats from Peatlands Loss and Degradation, A Rapid Response Assessment, Crump J. (ed.), 9 (“Current greenhouse gas emissions from drained or burning peatlands are estimated to be up to five percent of all emissions caused by human activity—in the range of two billion tonnes of CO2 per year. If the world has any hope of keeping the global average temperature increase under two degrees Celsius then urgent action must be taken to keep the carbon locked in peatlands where it is – wet, and in the
ground to prevent an increase in emissions. Furthermore, already drained peatlands must be rewetted to halt their ongoing significant emissions. However, this is not as simple as it seems. Knowing the location of peatlands continues to be a challenge.”). See also Humpenöder F., Karstens K., Lotze-Campen H., Leifeld J., Menichetti L., Barthelmes A., & Popp A. (2020) Peatland Protection and Restoration are Key for Climate Change Mitigation, ENVIRON. RES. LETT. 15(10): 1–12, 10 (“However, in line with other studies (Leifeld et al 2019), our results indicate that it is possible to reconcile land use and GHG emissions in mitigation pathways through a peatland protection and restoration policy (RCP2.6 + PeatRestor). Our results suggest that the land system would turn into a global net carbon sink by 2100, as projected by current mitigation pathways, if about 60% of present-day degraded peatlands, mainly in the tropical and boreal climate zone, would be rewetted in the coming decades, next to the protection of intact peatlands. Therefore, peatland protection and restoration are key for climate change mitigation. At the same time, our results indicate that the implementation costs of peatland protection and restoration measures are low, and that there are almost no impacts on regional food security.”).

189 Intergovernmental Panel on Climate Change (2019) Summary for Policymakers, in SPECIAL REPORT ON THE OCEAN AND CRYOSPHERE IN A CHANGING CLIMATE, Pörtner H.-O., et al. (eds.), 30 (“Restoration of vegetated coastal ecosystems, such as mangroves, tidal marshes and seagrass meadows (coastal ‘blue carbon’ ecosystems), could provide climate change mitigation through increased carbon uptake and storage of around 0.5% of current global emissions annually (medium confidence). Improved protection and management can reduce carbon emissions from these ecosystems.”).

190 Booth M. S. (2018) Not Carbon Neutral: Assessing the Net Emissions Impact of Residues Burned for Bioenergy, ENVIRON. RES. LETT. 13: 1–10, 8 (“For bioenergy to offer genuine climate mitigation, it is essential to move beyond the assumption of instantaneous carbon neutrality. The [net emissions impact (NEI)] approach provides a simple means to estimate net bioenergy emissions over time, albeit one that tends to underestimate actual impacts. The model finds that for plants burning locally sourced wood residues, from 41% (extremely rapid decomposition) to 95% (very slow decomposition) of cumulative direct emissions should be counted as contributing to atmospheric carbon loading by year 10. Even by year 50 and beyond, the model shows that net emissions are a significant proportion of direct emissions for many fuels.”). See also Sterman J. D., et al. (2018) Does Replacing Coal with Wood Lower CO2 Emissions? Dynamic Lifecycle Analysis of Wood Bioenergy, ENVIRON. RES. LETT. 13: 1–10, 8 (“Scenario 2 shows the realistic case with the combustion efficiency and supply chain emissions estimated for wood pellets (supplementary table S5), again assuming 25% of the biomass is harvested by thinning. Because production and combustion of wood generate more CO2 than coal, the first impact of bioenergy use is an increase in atmospheric CO2. Regrowth gradually transfers C from the atmosphere to biomass and soil C stocks, leading to a carbon debt payback time of 52 years; after 100 years CO2 remains 62% above the zero C case.”).

191 Intergovernmental Panel on Climate Change (2018) Summary for Policymakers, in GLOBAL WARMING OF 1.5 ºC, Masson-Delmotte V. P., et al. (eds.), 6 (“Human activities are estimated to have caused approximately 1.0 ºC of global warming above pre-industrial levels, with a likely range of 0.8 ºC to 1.2 ºC. Global warming is likely to reach 1.5 ºC between 2030 and 2052 if it continues to increase at the current rate. (high confidence).”). In addition to cutting CO2 emissions and emissions of the super climate pollutants, the IPCC 1.5 ºC Report also calculates the need for significant CO2 removal. Id., at 17 (“C.3. All pathways that limit global warming to 1.5ºC with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO2; over the 21st century.”).

192 Xu Y. & Ramanathan V. (2017) Well below 2 ºC: Mitigation strategies for avoiding dangerous to catastrophic climate changes, PROC. NAT’L. ACAD. SCI. 114(39): 10315–10323, 10319 (“Box 2. Risk Categorization of Climate Change to Society. … Warming of such magnitudes also has catastrophic human health effects. Many recent studies (50, 51) have focused on the direct influence of extreme events such as heat waves on public health by evaluating exposure to heat stress and hyperthermia. It has been estimated that the likelihood of extreme events (defined as 3-sigma events), including heat waves, has increased 10-fold in the recent decades (52). Human beings are extremely sensitive to heat stress. For example, the 2013 European heat wave led to about 70,000 premature mortalities (53). The major finding of a recent study (51) is that, currently, about 13.6% of land area with a population of 30.6% is exposed to deadly heat. … According to this study, a 2 ºC warming would double the land area subject to deadly heat and expose 48% of the population. A 4 ºC warming by 2100 would subject 47% of the land area and almost 74% of the world population to deadly heat, which could pose existential risks to humans and mammals alike unless massive adaptation measures are implemented, such as providing air conditioning to the entire population or a massive relocation of most of the population to safer climates. … This bottom 3 billion population comprises mostly subsistent farmers, whose livelihood will be severely impacted, if not destroyed, with a one- to five-year megadrought, heat waves, or heavy floods; for those among the bottom 3 billion of the world’s population who are living in coastal areas, a 1- to 2-m rise in sea level (likely with a warming in excess of 3ºC) poses existential threat if they do not relocate or migrate. It has been estimated that several hundred million people would be subject to famine with warming in excess of 4 ºC (54). However, there has
essentially been no discussion on warming beyond 5 °C. Climate change-induced species extinction is one major concern with warming of such large magnitudes (>5°C). The current rate of loss of species is ~1,000-fold the historical rate, due largely to habitat destruction. At this rate, about 25% of species are in danger of extinction in the coming decades (56). Global warming of 6°C or more (accompanied by increase in ocean acidity due to increased CO₂) can act as a major force multiplier and expose as much as 90% of species to the dangers of extinction (57). The bodily harms combined with climate change-forced species destruction, biodiversity loss, and threats to water and food security, as summarized recently (58), motivated us to categorize warming beyond 5°C as unknown??, implying the possibility of existential threats.”).

193 Steffen W., et al. (2018) Trajectories of the Earth System in the Anthropocene, Proc. Nat’l. Acad. Sci. 115(33): 8252–8259, 8254, 8256 (“This risk is represented in Figs. 1 and 2 by a planetary threshold (horizontal broken line in Fig. 1 on the Hothouse Earth pathway around 2 °C above preindustrial temperature). Beyond this threshold, intrinsic biogeophysical feedbacks in the Earth System (Biogeophysical Feedbacks) could become the dominant processes controlling the system’s trajectory. Precisely where a potential planetary threshold might be is uncertain (15, 16). We suggest 2 °C because of the risk that a 2 °C warming could activate important tipping elements (12, 17), raising the temperature further to activate other tipping elements in a domino-like cascade that could take the Earth System to even higher temperatures (Tipping Cascades). Such cascades comprise, in essence, the dynamical process that leads to thresholds in complex systems (section 4.2 in ref. 18). This analysis implies that, even if the Paris Accord target of a 1.5 °C to 2.0 °C rise in temperature is met, we cannot exclude the risk that a cascade of feedbacks could push the Earth System irreversibly onto a “Hothouse Earth” pathway. … Hothouse Earth is likely to be uncontrollable and dangerous to many, particularly if we transition into it in only a century or two, and it poses severe risks for health, economies, political stability (12, 39, 49, 50) (especially for the most climate vulnerable), and ultimately, the habitability of the planet for humans.”).