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About IGSD 
IGSD’s mission is to promote just and sustainable societies and to protect the environment by 
advancing the understanding, development, and implementation of effective and accountable 
systems of governance for sustainable development. 
 
Beginning in 2005, IGSD embarked on a “fast-action” climate mitigation campaign that will 
result in significant reductions of greenhouse gas emissions and will limit temperature increase 
and other climate impacts in the near term. The focus is primarily on strategies to reduce non-
CO2 climate pollutants as a complement to cuts in CO2, which is responsible for more than half 
of all warming. It is essential to reduce both non-CO2 pollutants and CO2. Neither alone is 
sufficient to limit the increase in global temperature to a safe level. A three-level strategy of 
achieving carbon neutrality, slowing the rate of warming with the reduction of non-CO2 climate 
pollutants, and removing carbon from the atmosphere are key to climate stability.  
 
IGSD’s fast-action strategies include reducing emissions of short-lived climate pollutants—black 
carbon, methane, tropospheric ozone, and hydrofluorocarbons. They also include measures to 
promote energy efficiency of air conditioners and other appliances, and measures to capture, 
reuse, and store CO2 after it is emitted, including biosequestration and mineralization strategies 
that turn carbon dioxide into stable forms for long-term storage while enhancing sustainable food 
supply. 

 
 

 
 

Institute for Governance & Sustainable Development 
 
This Primer is available on IGSD’s website (http://www.igsd.org/primers/polar/) with active 
links to the references and periodic updates. IGSD’s Primer on HFCs and Primer on Short-Lived 
Climate Pollutants are also available on IGSD’s website. Unless otherwise indicated, all content 
in the Primer carries a Creative Commons license, which permits non-commercial re-use of the 
content with proper attribution. Copyright © 2019 Institute for Governance & Sustainable 
Development. 



 3 

Preamble 
 

This Primer covers the present and future impacts of climate change on the Polar Regions and 
what solutions and resources are available to slow the progression of climate change. The Primer 
discusses observations of recent warming as well as tipping elements and impending tipping 
points particular to the Polar Regions before a thorough discussion of the present observations 
and future projections for Arctic sea ice, permafrost, and the ice sheets of Greenland and 
Antarctica. The Primer also relates potential solutions to combat climate change, especially in 
the crucial near-term given the proximity to some tipping points. Furthermore, the Primer 
includes discussion of existing laws and policies as well as organizations and collectives working 
to protect the vulnerable Polar Regions. 
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INTRODUCTION 
 
This Primer will focus on the impact climate change is already having on the Polar Regions, the 
projections for what will happen in the future, and what can be done about it. The Arctic is 
warming at twice the global rate,1 but both poles are considered in this Primer because they are 
subject to a number of globally consequential climate tipping elements2—for which passing a 
critical threshold (tipping point) unleashes significant and often unstoppable change—and self-
reinforcing climate feedbacks, the triggering of which can permanently alter the state of the 
global and regional climate through a domino-like effect.3 Self-reinforcing feedbacks and tipping 
elements of the Polar Regions include: declining Arctic sea ice; thawing permafrost; and melting 
ice sheets in Greenland and Antarctica.4 Another feedback—the poleward migration of mid-
latitude clouds—plays a role in Arctic amplification, exacerbating warming and bringing the 
region closer to tipping points.5  
 
 

Fig. 1: Arctic Region 

 
This map of the Arctic was created by State Department geographers as part of the U.S. Chairmanship of 
the Arctic Council. (U.S. Department of State, Map of the Arctic Region (last accessed 23 May 2018).) 
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The Antarctic region is comprised of Antarctica and the Southern Ocean that surrounds the 
continent. Antarctica is divided into two parts: West Antarctica and the much larger East 
Antarctica. West Antarctica is home to the Antarctic Peninsula and also many ice shelves. See 
Figure 2. 
 
 

Fig. 2: Antarctic Region 

 
This map shows the major geographical features on the Antarctic continent and the USA and UK research 
stations, to accompany the Landsat Image Mosaic of Antarctica (LIMA). For information about LIMA and 
to access the imagery, go to http://lima.usgs.gov. (U.S. Geological Survey, Antarctic Overview Map (last 
accessed 23 May 2018).) 
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Because the poles are routinely covered in snow and ice, they are part of the global cryosphere 
and are crucial to the climate system.6 These frozen areas of the planet are particularly vulnerable 
to the rising temperatures that induce melting. The Arctic Ocean is covered in sea ice, and the 
Arctic region also includes the Greenland ice sheet and large areas of permafrost.7 At the other 
pole, Antarctica is a massive, snow- and ice-covered continent that has ice-shelves floating over 
the ocean and sea ice surrounding the continent.8 
 
Following the discussion of the current science, the Primer will detail priorities for policymakers 
and other interested parties for addressing climate change, especially as it pertains to the Arctic 
in the near-term and will impact the Antarctic region as warming continues. The Polar Regions 
are particularly susceptible to self-reinforcing feedbacks and recent warming suggests we may be 
perilously close to crossing tipping points that could trigger the various tipping elements, shifting 
the poles—and the planet—into a new climate state.9 The priorities include what must be done to 
attain near-term success to slow the rate of warming as well as stabilize long-term climate.  
 
Fast mitigation to cut the short-lived climate pollutants (SLCPs)10—super pollutants HFCs, 
methane, tropospheric ozone, and black carbon—can cut Arctic warming quickly, slow 
feedbacks, and reduce the risk of passing tipping points.11 Fast mitigation also can slow the 
melting of the Greenland Ice Sheet and the Antarctic ice sheets, and thus slow the rate of sea 
level rise. Solutions exist to make fast cuts to SLCPs and to take other fast mitigation actions, 
and in many cases these solutions can be implemented through existing laws and institutions. 
 
The mitigation measures discussed in detail in this Primer focus on slowing the near-term 
warming that will slow the progression of self-reinforcing feedbacks and avoid tipping points. 
Solutions include mitigation measures for SLCPs, especially those of methane and black 
carbon,12 and HFCs being phased down under the 2016 Kigali Amendment to the Montreal 
Protocol.13 Additionally, other existing legal and political frameworks showcase the current 
status of SLCP mitigation as well as opportunities for enhancing action for added benefit and 
greater likelihood of achieving the Paris Agreement goals. 
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RECENT WARMING, PROXIMITY TO 1.5 ºC, AND ARCTIC AMPLIFICATION 
 
Global temperatures have increased 1.0 ºC above preindustrial levels.14 The IPCC Special Report 
on 1.5 ºC Warming calculates that warming could reach 1.5 ºC above pre-industrial temperatures 
between 2030 and 2052 if warming continues at the current rate.15 As global temperatures rise, 
the Arctic warms at twice the rate, making the region particularly vulnerable to climate change. 
 
Climate change is accelerating from rising emissions, declining air pollution, and natural climate 
variability.16 The rate of warming is accelerating and is projected to accelerate further in the 
coming years.17 With a faster rate of change, human and natural systems are less able to adapt.18 
Already, almost a third of the world’s population lives in a climate where deadly temperatures 
occur at least 20 days a year.19 Climate change may cause disruptions to ecosystems with some 
species shifting their range—usually to higher latitudes—and others facing extinction.20 In the 
Arctic, redistribution of species has brought new species into the region, but native species are 
struggling, which challenges traditional knowledge systems and food security.21 
 
 
Recent warming observations 
As a consequence of climate change and Arctic amplification (discussed below),22 the Arctic has 
warmed 2 ºC, twice as much as the planet as a whole.23 The rate of temperature increase also is 
accelerating. Since 1981, the rate of global annual temperature increase has more than doubled in 
recent decades to a rate of 0.17 ºC per decade, compared to 0.07 ºC per decade from 1880.24 
Every year since 1977 has had surface temperatures above the 20th century average, and record 
setting temperatures were set every thirteen years from 1880 to 1980, but since then, record 
temperatures are set roughly every three years.25 
 
Globally, the year 2016 was the warmest on record, and 2018 was the fourth warmest year on 
record behind 2015, 2016, and 2017.26 The trio of years of 2015–2017 all hit 1.0 ºC or higher 
above the 1880–1900 average, but 2018 was close, reaching 0.97 ºC above preindustrial 
temperatures.27 The record heat of 2016 was partially fuelled by strong El Niño conditions in the 
first third of the year,28 and 2017 was the warmest year without the added influence of El Niño.29  
 
 
Table 1: Global average warming in 2018 and 2016 (warmest year on record)30 

Organization Warming in 
2018 

Baseline for 
comparison Rank for 2018 Warming in 

2016 

NASA GISS31 0.83 ºC 
(1.5 ºF) 1951–1980 4th 0.99 ºC 

(1.78 ºF) 

NOAA32 0.97 ºC 
(1.75 ºF) 

1880–1900 
(pre-industrial) 4th 0.94 ºC 

(1.69 ºF) 

WMO33 1.0 ºC 
(1.8 ºF) 

1850–1900 
(pre-industrial) 4th  1.2 ºC 

(2.16 ºF) 

Hansen et al. 201934 1.1 ºC 
(2.0 ºF) 

1880–1920 
(pre-industrial) 4th 1.26 ºC 

(2.3 ºF) 
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Proximity to 1.5 ºC and timing of reaching 1.5 ºC and 2 ºC 
As mentioned above, the IPCC stated that 1.5 ºC could be reached between 2030 and 2052, 
though natural climate variability could cause temperatures to cross the 1.5 ºC threshold for the 
first time even sooner, sometime between 2026 and 2031.35 Emissions of the past, present, and 
future lock-in warming that will be realized years later.36 If emissions continue at the current 
rate, the carbon budget to stay under 1.5 ºC will be exhausted in few years.37 However, recent 
considerations of greenhouse gas emissions prior to 1850 suggest that the carbon budget may be 
even smaller and exhausted even quicker.38 
 
Overall, CO2 concentration has accelerated in recent years.39 In the 1980s and 1990s, CO2 
increased by about 1.5 ppm/year, but from 2008 to 2017, the rate increased to around 2.2 
ppm/year,40 rising to approximately 2.63 ppm/year in 2018.41 The extraordinarily long lifetime of 
CO2—centuries to millennia 42 —means that the concentration of CO2 in the atmosphere 
continues to increase even when emissions flatline. CO2 emissions remained constant from 
2014–2016,43 but 2017 saw CO2 emissions increase by 1.4%44 and 2018 is projected to have a 
rise of 2.7% (with a possible range of 1.8 to 3.7 %).45 This growth was the result of increased 
economic growth combined with cheaper fossil fuels and weaker policies relating to energy 
efficiency.46 When compared to geologic history, anthropogenic emissions far outpace any other 
time period in the last 66 million year.47 
 
 
Arctic amplification 
The Arctic has warmed twice the global average, primarily driven by the “cascade of feedbacks 
that collectively amplify Arctic warming.”48 Arctic amplification describes the reality that the 
Arctic responds to global temperature changes more dramatically than lower latitudes.49 The 
mechanisms driving the amplification include: reduced albedo from loss of sea ice and decreased 
snow cover (known as the ice-albedo feedback); increased water vapour in the Arctic 
atmosphere; altered cloud cover; added heat in the newly ice-free ocean areas; lowered rate of 
heat loss due to lower surface temperatures in the Arctic; and reduced air pollution.50 
 
Temperatures in the Arctic from 2011 to 2015 were warmer than any year on record since the 
instrumental record began in 1900. 51  Under medium to high greenhouse gas (GHG) 
concentration scenarios, the Arctic is projected to warm to an annual average temperature of 4 to 
5 ºC above late 20th century values before mid-century, which is twice what is projected for the 
Northern Hemisphere.52 
 
Arctic amplification can alter large-scale atmospheric flow and contribute to extreme weather 
events beyond the Arctic.53 Changes in the Arctic can influence weather systems passing through 
the mid-latitudes, including increasing the incidence of cold spells over land. 54  Arctic 
amplification also supports atmospheric conditions that promote enhanced Greenland melting,55 
and recent observations from Greenland corroborate the theory.56 
 
Increased global temperatures will affect the Arctic through changes to clouds. Presently, clouds 
have a net negative forcing of –20 W/m2, comprised of +30 W/m2 from the greenhouse effect of 
clouds (absorbing and emitting longwave radiation from the surface back towards the surface) 
and –50 W/m2 from the reflective cooling (reflecting incoming solar radiation).57 Because of the 
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large magnitude of the cloud radiative effect, small changes can result in large feedbacks.58 
(Feedbacks are covered in the next section.) 
 
Global climate models suggest that changes in large-scale atmospheric circulation promote 
subtropical drying that causes a poleward shift in clouds. Observations in storm track cloudiness 
from 1983–2003 corroborate these model simulations, adding that reduced planetary albedo from 
clouds shifting to areas with less sunlight will reduce the cloud-albedo effect and amplify 
warming.59 Observations show that together, the poleward shifting of the clouds and the higher 
tops contribute to warming the surface, enhancing warming and setting the stage for further 
changes in cloud patterns and cloud heights in the future.60 
 
 
Unmasked warming with reduction of aerosols 
Due to common sources, reducing emissions of CO2 and other greenhouse gases also removes 
aerosols from the atmosphere, which is beneficial to human health. However, if emissions 
suddenly ceased, the earth would continue to warm. Ramanathan and Feng (2008) caclculated—
and Ramanathan and Xu (2010) confirmed—that committed warming may be as high as 2.4 ºC 
and that aerosols are the reason why we have yet to see all of the warming from the greenhouse 
gases that have so far been released into the atmosphere.61 Many aerosols (particularly sulphates) 
have a cooling effect, exerting 1.8 W/m2 of negative radiative forcing on the climate,62 which 
counters the positive radiative forcing from greenhouse gases.63 
 
Not all aerosols have a negative radiative impact on the climate. Black carbon—and brown 
carbon co-emitted alongside it—are notable exceptions. Like other aerosols, black carbon only 
remains in the atmosphere for a very short time, a few days to weeks.64 Black carbon has a global 
warming potential of 900 (120–1,800) times greater than CO2

65  and directly warms the 
atmosphere by absorbing incoming solar radiation and emitting it as heat and indirectly warms 
the atmosphere through cloud formation.66  
 
Black carbon is co-emitted with other pollutants and comes from a myriad of sources, including 
diesel engines and industrial and residential coal use.67 Some organic carbon that is co-emitted 
with black carbon also absorbs some solar radiation and is known as “brown carbon”.68 The 
warming effect of brown carbon offsets the cooling effect of light organic carbon, leaving the 
warming effect from black carbon untouched and creating an overall warming from organic 
carbon emissions.69 
 
Reducing aerosols from air pollution is critical to protecting human health and provides a co-
benefit to reducing overall emissions, but policymakers must be aware that in reducing these 
pollutants that cool the atmosphere will require enhanced measures against those pollutants that 
warm the atmosphere to account for the unmasking of the warming as pollution policies take 
effect.70 
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SELF-REINFORCING FEEDBACKS AND TIPPING ELEMENTS 
 
The Polar Regions are already exhibiting signs of rapid warming, more so than the global 
average. At the same time, the Polar Regions are home to some of the most significant self-
reinforcing feedbacks and tipping points.71 These “wild cards” of the climate system create 
relatively abrupt shifts to the climate regime, some of which are irreversible on a human time 
scale. The amplified warming from self-reinforcing feedbacks brings tipping elements closer to 
the point of no return. Slowing global warming—and the warming in the Polar Regions—is 
essential to avoiding triggering the cluster of tipping elements whose tipping points exist 
between the 1.0 ºC of warming already experienced72 and the 1.5 and 2 ºC of warming goals.73 
See Figure 3. 
 
 

Fig. 3: Tipping elements and temperature ranges of their tipping points 

  
Fig. 3. Global map of potential tipping cascades. The individual tipping elements are color-coded 
according to estimated thresholds in global average surface temperature (tipping points) (12, 34). Arrows 
show the potential interactions among the tipping elements based on expert elicitation that could generate 
cascades. Note that, although the risk for tipping (loss of) the East Antarctic Ice Sheet is proposed at >5 
°C, some marine-based sectors in East Antarctica may be vulnerable at lower temperatures (35–38). 
(Steffen W., et al. (2018) Trajectories of the Earth System in the Anthropocene, PROC. NAT’L. ACAD. SCI. 
115(33):8252–8259, 8255.) 

 
 
Understanding self-reinforcing feedbacks and critical thresholds of tipping elements 
Warming has the potential to unleash self-reinforcing feedbacks, where some aspect of the 
climate system changes in such a way that amplifies warming.74 For example, declining Arctic 
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sea ice leads to less global reflectivity, which allows more solar energy to be absorbed at the 
surface that then leads to additional warming.75 Recent observations of the Arctic’s warming 
temperatures, declining sea ice, melting glaciers, and thawing permafrost suggest that the Arctic 
is already evolving into a new climate state.76 At the other end of the globe, Antarctica may be 
inching closer to abrupt climate change, where destabilisation of the West Antarctic Ice Sheet 
threatens a rapid collapse into the ocean that will raise sea levels extensively.77 
 
In accelerating warming, subsystems of the Earth’s climate—so called “tipping elements”78—
have the potential to be shifted into new regimes.79 Once these tipping elements surpass a critical 
threshold—the “tipping point”—the subsystem is slated to be different in the future and thus 
ceases to exist as presently understood.80 A tipping point is the critical threshold of a tipping 
element where a small change can trigger a much larger (and nonlinear) response that alters the 
state of the system and leads to a new climate regime.81 Tipping points for multiple tipping 
elements could be reached during this century,82 and many of these tipping elements may already 
be in motion and accelerating change.83 
 
 

Fig. 4: Breakdown of tipping points within temperature ranges 

 
Fig. 4. Abrupt shifts as a function of global temperature increase. Shown are the number of abrupt climate 
changes occurring in the CMIP5 database for different intervals of warming relative to the preindustrial 
climate. (Drijfhout S., et al. (2015) Catalogue of abrupt shifts in Intergovernmental Panel on Climate 
Change climate models, PROC. NAT’L. ACAD. SCI. 112(43):E5777–E5786, E5784.) 

 
Of thirty-seven tipping elements identified from IPCC models, eighteen are likely to occur with 
2 ºC of warming or less, with six likely between 1.0 ºC and 1.5 ºC and eleven between 1.5 ºC and 
2 ºC.84 See Figure 4.  
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Timing and tipping points 
Tipping points are difficult to predict because of the uncertainties associated with regional 
warming as well as the influence of internal climate variability.85 Some tipping points, such as 
sea-level rising 6–9 metres from melting ice sheets, may take millennia to be fully realized and 
thus give humanity and ecosystems more time to adapt.86 Other tipping points may happen on 
much shorter timescales, with little to no warning, providing humanity and ecosystems with little 
to no time to adapt.87 At the same time, ice sheet dynamics and non-linear changes to ice sheets 
can lead to irreversible loss that can be difficult to model and predict.88 Understanding feedbacks 
requires understanding of the range of possibility with uncertainty, especially with modelling key 
feedbacks like the loss of Arctic sea ice,89 and while some of the changes from feedbacks and 
tipping points are uncertain, they come with the potential for high-impact.90  
 
While some tipping points may have already been passed, fast mitigation can still prevent 
passing other tipping points and the compounding effect of cascading tipping points. 91 
Surpassing some tipping elements may trigger other tipping elements to breach their critical 
thresholds, exacerbating impacts and costs of climate change.92 Feedbacks and the climate-
economic shocks emanating from them may become the most important contributors to the cost 
of climate change.93   
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ARCTIC SEA ICE 
 
Arctic sea ice is sensitive to increasing temperatures, and as the Arctic was warmed more than 
the global average, the Arctic sea ice has been impacted.94 From 1979 to 2011, the Arctic lost 
nearly 40% of its sea ice.95 Since then, Arctic sea ice has repeatedly set record lows and 
consistently been below the long-term average.96 Ice thickness has also decreased, which has led 
to less older ice that is more stable as younger ice is more susceptible from breakup.97 With less 
ice in the Arctic, more solar radiation is absorbed in the region, which leads to more warming 
that then leads to less ice in a powerful feedback loop.98 The Arctic could become ice free during 
the summer months within a decade.99 Limiting warming to 1.5 ºC leads to far fewer summers of 
an ice-free Arctic than if warming is limited to 2 ºC.100 
 
 
Reduced Arctic sea ice and self-reinforcing warming 
The Arctic has already warmed by nearly twice the global average.101 There is little lag time 
between rising temperatures and decreasing sea ice area.102 Temperatures seen in the Arctic 
during November and December 2016 would be “extremely unlikely…in the absence of human-
induced climate change,”103 and these warmer temperatures contributed to the reduced sea ice 
extent in 2016.104 A 2018 study found that 60% of the exceptional Arctic warmth in 2016 was 
likely attributable to anthropogenic climate change.105 
 
As the Arctic warms, sea ice melts and exposes the darker water beneath, which absorbs more 
incoming solar radiation and further warms the region.106 Moreover, the persistently warmer 
water hinders significant ice growth in winter.107 Less ice makes for a less reflective surface 
(decreased albedo) that results in localized warming, which is exacerbated as the Arctic 
continues to lose ice in a positive feedback loop.108 
 
 

Fig. 5: Change in temperature (red), sea ice (black), & albedo (green) 

 
All-sky albedo [green line]…compared with annual-mean observed sea ice area (as a fraction of the ocean 
in the Arctic region) [black line] and surface air temperature averaged over the ocean in the Arctic region 
[red line]. (Pistone K., et al. (2014) Observational Determination of Albedo Decrease Caused by 
Vanishing Arctic Sea Ice, PROC. NAT’L. ACAD. SCI. 111(9):3322–3326, 3325.) 
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From 1979 to 2011, the summer minimum extent of Arctic sea ice decreased by 40%, greatly 
reducing the reflectivity of the planetary surface and altering the amount of solar energy 
absorbed into the region instead of being reflected back out to space.109 This caused an increase 
of climate forcing in the Arctic region of 6.4 ± 0.9 W/m2.110 If this change in radiative forcing of 
the Arctic were averaged globally, the forcing exerted by the loss of sea ice would be 0.21 ± 0.03 
W/m2, which is equivalent to 25% of the forcing globally from CO2 during the same period.111 
 
Another feedback mechanism that accelerates the reduction of Arctic sea ice is the vertical 
feedback mechanism, whereby the reduction of sea ice exposes ocean water that releases heat 
into the lower atmosphere, warming the lower atmosphere and thus melting the sea ice.112 Unlike 
the ice-albedo feedback that only operates when the region is exposed to solar radiation during 
the summer months, the vertical feedback mechanism continues in the winter.113 
 
 
Recent observations and climatology of the extent of Arctic sea ice 
The Arctic typically achieves its winter maximum sea ice in March and its summer minimum in 
September. On 13 March 2019, Arctic sea ice covered 14.78 million square kilometres, which is 
860,000 square kilometres below the 1981–2010 average, making the 2019 maximum the 
seventh lowest on record.114 The years 2015 to 2018 hold the records for lowest maximum sea 
ice extent, and 2017 was the lowest on record.115 
 
 

Fig. 6: Arctic sea ice extent for March and September from 1979 to 2018 

 
Time series of ice extent anomalies in March (the month of maximum ice extent) and September (the month 
of minimum ice extent). The anomaly value for each year is the difference (in %) in ice extent relative to the 
mean values for the period 1981-2010. The black and red lines are least squares linear regression lines. 
The slopes of these lines indicate ice losses of -2.7 ± 0.5% and 12.8 ± 2.3% per decade in March and 
September, respectively. Both trends are significant at the 99% confidence level. (Perovich D., et al. (2018) 
Sea Ice, in ARCTIC REPORT CARD 2018, 27.)  
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Fig. 7: Arctic sea ice extent for March 2018 and September 2018 

 
Average monthly sea ice extent in March (left) and September (right) 2018 illustrate the respective winter 
maximum and summer minimum extents. The magenta line indicates the median ice extents in March and 
September, respectively, during the period 1981-2010. (Perovich D., et al. (2018) Sea Ice, in ARCTIC 
REPORT CARD 2018, 26.) 

 
 
Arctic sea ice achieved its 2018 summer minimum extent of 4.59 million square kilometres on 
September 19 and 23, which is tied for sixth lowest minimum extent in the satellite record and 
163 million square kilometres below the 1981–2010 median minimum ice extent.116 While the 
minimum sea ice extent did not set a record as the lowest sea ice extent, the last twelve years 
mark the twelve lowest minimum sea ice extent measures in the satellite era.117 
 
The past five years have been the warmest in the Arctic, with 2018 being the second warmest 
and 2016 the overall warmest.118 The average surface temperature, as measured at land stations 
north of 60 ºN, from October 2015 to September 2016 was 2.0 ºC above the 1981–2010 average, 
which is about 3.5 ºC warmer than the start of the 20th century and the warmest for the region 
since 1900 (when the instrumental records began).119 In November 2016, Arctic temperatures 
reached astounding levels above average, up to 15 ºC above normal temperatures.120 The 
monthly average sea ice extent for November has declined 5% per decade between 1978 and 



 18 

2016.121 In December 2016, Arctic sea ice covered about 80% of the area around the North Pole; 
it usually covers closer to 95%.122 
 
 

Fig. 8: Monthly anomalies of Arctic sea ice extent from November 1978 to July 2018 

 
Figure 1. Anomalies in monthly sea-ice extent from November 1978 through July 2018. The colors indicate 
how many standard deviations sea-ice extent in a given month was above or below the mean sea-ice extent 
of the reference period 1981–2010. (Stroeve J. & Notz D. (2018) Changing state of Arctic sea ice across 
all seasons, ENVTL. RESEARCH LETTERS 13(103001):1–23, 6.) 

 
 
Leading up to the winter maximum of 2018, temperatures during February 2018 were 10–12 ºC 
above average over the Chukchi and Bering Sea.123 At the end of February 2018, temperatures 
near the North Pole were 20–30 ºC (36–54 ºF) above average, making this the third year in a row 
with extreme heat waves during the winter over the Arctic Ocean.124 Dramatically warmer 
temperatures were also observed in northern Greenland with hourly temperature observations 
reaching above freezing (0 ºC) 59 times while previous years saw far fewer—if any—similar 
spikes in hourly temperature observations.125 February 2018 also marked the first time that a 
shipping vessel was able to traverse the Arctic’s northern sea route during winter without the 
assistance of an icebreaker.126 As Arctic sea ice declines, the area will be opened up for 
additional shipping as well as for resource extraction, which can increase pollution in the 
region.127 
 
 
Thickness of sea ice 
Sea ice thickness and overall volume are equally important to the discussion of the Arctic and the 
effect added warming has on the region. Throughout the Arctic, the amount ice retained from 
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year to year is decreasing, with four-year old ice showing a significant decline in recent years, 
which is paired with increasing first year ice that is more delicate.128 The thickness of Arctic sea 
ice has declined by 65% from 1975–2012, which has led to less multi-year ice and more first 
year ice.129 The shift to younger and thinner ice in the Arctic Ocean is indicative of a new 
climate regime.130  
 
 

Fig. 9: Quantity and extent of old and young Arctic sea ice 

  
Sea ice age coverage map for (a) March 1985 and b) March 2018. (c) Sea ice age coverage by year, 1985- 
2018. (Perovich D., et al. (2018) Sea Ice, in ARCTIC REPORT CARD 2018, 28.) 

 
 
The age of sea ice is crucial to the stability of the Arctic as older ice is often thicker and more 
resilient to changes in atmospheric and oceanic warming than younger ice.131 Even if ice rebuilds 
after a summer of significant loss, the newer ice is not nearly as thick and this lesser volume of 
ice is more at risk of melting in the subsequent summer.132 The rebuilding of ice in the winter 
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months is crucial to maintaining ice year round, and the progression to more first year ice 
increases the potential for ice-free Arctic.133 In March 2016, first-year ice made up 78% of the 
ice cover, compared with 55% in 1985.134 Very old ice (greater than 4 years old) made up only 
0.9% of the ice pack in 2017 whereas in 1985, very old ice constituted 16% of the sea ice;135 in 
2018, only 1% of the Arctic sea ice was very old ice.136 
 
 
Projections for the future and the likelihood of ice-free Arctic 
Predictions for when the Arctic will become ice free137 vary, but the loss of summer sea ice is 
likely to happen within the next few decades, potentially as early as the 2030s.138 Scientists using 
“trends” to predict an ice-free Arctic suggest that the Arctic could be ice free within the next 
decade.139 Others embrace the randomness of natural variability in the climate system alongside 
the observations to statistically determine an outcome, and they project that the Arctic could be 
ice free around 2030.140 Modelling studies have revealed a large range of possibilities for when 
the Arctic will be ice free, with a median range around 2060 and some studies projecting as early 
as 2040.141 
 
Keeping warming under 2 ºC greatly reduces the risk of an ice-free Arctic, and keeping warming 
under 1.5 ºC even more so.142 Warming of 2 ºC globally leads to a 1-in-3 chance of an ice-free 
Arctic in September, while warming of 1.5 ºC has only a 1-in-40 chance.143 The probabilities of 
having an ice-free Arctic before reaching 1.5 ºC, 2 ºC, or 3 ºC warming are 10%, 80%, and 
100%, respectively.144 Because ice-free conditions are related to temperature, an ice-free Arctic 
in a 1.5 ºC warmed world is more likely to be an isolated event, but a 2 ºC world is more likely 
to see repeated instances of an ice-free Arctic.145 Limiting warming to 1.5 ºC requires emissions 
to be reduced by at least 5% per year globally and negative net carbon emissions to be achieved 
by the latter half of this century.146 
 
The probability of an ice-free Arctic continues to increase even after temperatures have 
stabilized because of the internal variability of Arctic sea ice.147 Internal variability in the Arctic 
can add about two decades of uncertainty to when the Arctic projected be ice free,148 which 
extends the range of the first ice-free Arctic to sometime between 2032 and 2053 under a 
business-as-usual emissions scenario (RCP8.5149) or 2043 to 2058 for a moderate emissions 
scenario (RCP4.5).150 The timing of the first ice-free Arctic (based on temperature thresholds) is 
also influenced by internal variability of the region, and in some of models, the Arctic becomes 
ice free with 1.4 ºC of warming and others with 1.9 ºC of warming.151 
 
Even if the Arctic is not completely ice free with 1.5 ºC of warming, 55% of the September sea-
ice extent measurements are projected to be below the 2012 record minimum; this increases 
substantially for 2 ºC of warming where 98% of September sea-ice extent measurements will 
likely exceed the record minimum.152 
 
Concern should not be just for when the Arctic sea ice is completely gone because the reduced 
sea ice itself affects the climate through more absorption of heat that delays freeze up and other 
issues relating to heat exchange as well as localized impacts like increased permafrost 
temperatures and Greenland melt.153 There has been an increase in rapid ice loss events—where 
more than 800,000 square kilometres of ice is lost in seven days—since 2005, with some of the 
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most dramatic events happening in 2007, 2014, and 2015.154 Rapid ice loss events in the Arctic 
lead to warming in the surrounding land areas, which can lead to permafrost degradation.155 As 
observed during the passage of a particularly strong Arctic storm, the lack of sea ice alters the 
heat fluxes, leading to extreme warming in the Arctic.156  
 
 
Cumulative emissions and aerosols contributing to Arctic warming and ice loss 
Researchers have established a linear relationship between average September sea-ice extent and 
cumulative carbon dioxide emissions such that 3 ± 0.3 m2 of September sea ice were lost for 
each metric ton of carbon dioxide emitted.157 This would lead to September sea-ice area being 
completely lost with an additional 1000 Gt CO2.158  
 
While this relationship of emissions to lost sea ice may serve as an attractive tool to illustrate and 
communicate individual emissions to climate impact,159 changes to the Arctic are affected by 
more than just CO2 emissions.160 Specifically, changes in anthropogenic aerosols affected 
incoming solar radiation such that reduction in air pollution led to declining aerosols that 
contributed to Arctic warming following years of cooling the Arctic during the mid-20th 
century.161  
 
 
Decreased Arctic sea ice and more cyclones and larger ocean waves 
Thinner sea ice is more predisposed to melting by changing wave conditions and increased 
cyclones.162 Less sea ice in the Arctic Ocean allows ocean waves to grow larger, allowing for an 
acceleration of ice breakup and retreat.163 Warming Arctic conditions also leads to a greater 
number of cyclones and more intense cyclones.164 Intense cyclones within the Arctic increase the 
ice melt.165 Winds and waves from the cyclone break up the ice as the winds move the ice more 
quickly and the waves induce ice fragmentation.166 These storms stir warmer ocean water toward 
the bottom of the sea ice, enhancing the melt.167 
 
As an example, a storm in August 2012 lasted a few days, yet had a lasting impact on the sea ice 
that remained for roughly a half month.168 A similar storm occurred during 2007, which was the 
previous record holder for minimum September sea ice, but the 2012 storm created a larger 
disturbance to the sea ice because the ice was much thinner and susceptible to disintegration by 
the storm.169 For this reason, when less ice is present in the Arctic, the remaining ice is more 
prone to damage from cyclones. 
 
 
Teleconnections—what happens in the Arctic does not stay in the Arctic  
Atmospheric teleconnections extend the impacts of the changing Arctic around the globe, 
highlighting the fact that changes in the Arctic are not just a problem for the Arctic but for the 
planet as a whole. Arctic amplification and declining sea ice have been linked to large-scale 
changes in atmospheric circulation throughout the Northern Hemisphere. 
 
Because the Arctic has warmed faster than the global average, there is less of a temperature 
difference between the equator and the pole. This causes the winds that blow from west to east 
over the mid-latitudes to weaken.170 As a result, storm systems in the mid-latitudes are slowed in 
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their progression eastward, leading to more dramatic precipitation events.171 Overall, these 
events have been happening more frequently in recent years.172 While many atmospheric 
conditions may influence the jet stream that moves these systems, Arctic amplification is one of 
the likely culprits.173 
 
Of the weather extremes predicted to occur in a warming world, extreme cold and more intense 
snowstorms have increased over the U.S. and Eurasia,174 with the eastern third of the U.S. being 
most affected.175 Even when compared with other climate features like the El Niño-Southern 
Oscillation (ENSO), changes in the Arctic have had the greatest influence on mid-latitude 
weather.176 
 
Cvijanovic et al. (2017) made a connection of declining Arctic sea ice affecting the precipitation 
over California. This study found that loss of Arctic sea ice led to changes in the tropical 
convection that triggered a response in the North Pacific that contributed to steering precipitation 
away from California.177 Given the anthropogenic impact on Arctic sea ice and the connection 
demonstrated here, this study lends further attribution of human-induced climate change on the 
droughts in California.178 The evidence suggests that the decrease in Arctic sea ice increases the 
chance of California being drier. This is not the same as California being drier every year; for a 
20-year average, the change in precipitation is 10–15% less than the long-term average.179 
Additionally, this evidence does not directly connect the recent California drought with the 
present loss in Arctic sea ice.180 Furthermore, the Cvijanovic study was tailored to consider the 
teleconnections between Arctic sea ice and precipitation over California, and other atmospheric 
circulations and climate forcings foster uncertainty as to the extent of the direct connection.181 
 
 
Reversibility with cooler temperatures or geoengineering 
Unlike other tipping elements where regime changes take millennia to reverse, the rapid response 
of sea ice to temperatures suggests that sea-ice recovery is theoretically possible if CO2 
concentrations—and eventually temperatures—return to more manageable levels.182 However, 
research shows that even under the most stringent of emissions scenarios outlined by the IPCC 
(RCP2.6), sea ice is not likely to rebound within this century.183 Even though full recovery of 
Arctic sea ice will take centuries, the modelled response time demonstrates that sea ice begins to 
recover when temperatures begin to decrease.184  
 
One proposed project for Arctic sea ice recovery is a geoengineering project that would use 
wind-powers pumps to pump ocean water onto the surface of the sea ice to increase its thickness 
over time.185 Deploying the project over 10% of the Arctic would cost $50 billion per year for 
ten years and require steel equivalent to 13% of U.S. steel production and 5% of the world’s 
container shipping capacity.186 Another project, Ice911, has proposed preserving Arctic ice 
through application of eco-safe reflective sand that maintains the natural reflectivity of the ice.187 
 
While Artic ice management can impact the ice-albedo feedback, like other geoengineering 
techniques, the process cannot address other climate change impacts concerns like overall CO2 
concentrations and ocean acidification,188 and there are a myriad of other questions about the 
feasibility of the project, ability to maintain the machinery in the harsh Arctic conditions, and 
potential environmental impacts.189 
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Others have suggested regionally focused geoengineering through sulphate injection into the 
stratosphere above the Arctic to increase the albedo in the region and reduce warming.190 
However, success would demand extensive international cooperation, thousands of flights per 
day to get the aerosols into the atmosphere, and any disruption to the injections would see an 
immediate return of the warming.191 Furthermore, sulphate injections can affect ozone layer 
recovery by reducing the amount of protective ozone in the stratosphere above Antarctica.192  
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PERMAFROST 
 
Permafrost is soil that stays below freezing temperatures for at least two consecutive years.193 
Permafrost covers roughly 15 square million kilometres of the Earth’s surface.194 Increased 
temperatures can lead to irreversible thawing of permafrost that can amplify warming by 
releasing carbon dioxide and methane into the atmosphere.195 Permafrost is incredibly sensitive 
to temperature, and 65–85% of emissions from permafrost can be avoided if anthropogenic 
emissions are far less than a business-as-usual scenario.196 Because the process of building up 
carbon in permafrost operates on a millennial timescale, rapid release of permafrost carbon is 
irreversible on a human timescale.197 
 
 
Defining the permafrost-carbon feedback 
When permafrost thaws, organic matter is broken down into carbon dioxide (CO2) and methane 
(CH4) that is released into the atmosphere.198 There are four mechanisms through which 
permafrost thaws and releases carbon into the atmosphere: thickening of the active layer, talik 
formation, thermokarst development, and river and coastal erosion.199 The active layer is the 
upper layer of the soil that thaws and refreezing each year (see Figure 10).200 Talik is an unfrozen 
layer of soil that has a high moisture content and temperature conducive to carbon release.201 
Thermokarst lakes form when ice-rich soil thaws and the ground collapse, forming depressions 
that when filled with water are even more favorable for carbon release and additional permafrost 
thaw.202 Permafrost can release carbon as river discharge changes as well as along coastal 
boundaries from rising sea levels and wave and storm damage.203 
 
 

Fig. 10: Schematic diagram of permafrost feedback mechanism of deepening active layer 

 
Fig. 1. A schematic showing the basic dynamics of the permafrost carbon feedback (PCF). (Schaefer K., et 
al. (2011) Amount and timing of permafrost carbon release in response to climate warming, TELLUS SERIES 
B CHEMICAL & PHYSICAL METEOROLOGY 63(2):165–180, 166.) 
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Determining the permafrost-carbon climate feedback requires an understanding of how much 
carbon could be released, how quickly that will happen, and whether the emissions of carbon are 
released as carbon dioxide or methane.204 The impact that methane released from thawing 
permafrost will have on the global climate varies across studies, ranging from 25%205 to 40% of 
the total warming.206 Part of the discrepancy comes from the difference in soil types. Oxic soils 
are drained soils (“dry”), and anoxic soils are water-saturated soils (“wet”). With dry soils, the 
microorganisms oxidize organic carbon into carbon dioxide.207 In wet soils, the decomposition 
rate is slowed due to the presence of the water, but the environment is conducive to the formation 
of both carbon dioxide and methane, which can have a greater impact on the climate because of 
methane’s super pollutant characteristics.208 
 
Some researchers have concluded that the permafrost-carbon feedback is strongest for dry 
soils.209 But others noted that dry soils only release carbon dioxide, and then after once some 
time has passed, the wet soils release both carbon dioxide and methane that will, in the end, have 
a far greater impact on climate change.210 Permafrost impedes drainage of the soils, so it is likely 
that the permafrost would create anoxic soil environments, which—given the release of both 
carbon and methane, the latter having a much higher global warming potential (GWP)—
potentially leads to more warming.211 
 
 
Current state of permafrost 
Permafrost covers about 15 million square kilometres. 212  Areas with >90% coverage is 
continuous permafrost, 50–90% coverage is discontinuous permafrost, 10–50% coverage is 
sporadic permafrost, and less than 10% permafrost are isolated patches.213  
 
The amount of greenhouse gases released from permafrost in the past 50 years has been 
relatively small, but about 50% of the world’s soil carbon is contained within the Arctic.214 Vast 
amounts of soil carbon could be released by 2050 as a result of warming temperatures, further 
accelerating warming.215 With recent warming, Alaskan soils have already been shown to be a 
carbon source from 2012–2014, and for the October to December period, CO2 emissions rates 
increased 73% since 1975.216  
 
Because the high-latitude regions have the largest stocks of soil carbon and the fastest rates of 
warming, the “overwhelming majority of warming-induced soil [carbon] losses are likely to 
occur in Arctic and subarctic regions.”217 Assuming 2 ºC of warming under business-as-usual, by 
2050 soils would release 55 ± 50 Gt of carbon (equal to 200 billion tonnes of CO2), increasing 
CO2 concentration by 25 ppm,218 equivalent to 12–17 per cent of the expected emissions in 
2050.219 
 
Approximately 3.4 million square kilometres of permafrost have thawed in the twentieth 
century.220 Globally, permafrost has warmed 0.29 ºC between 2007 and 2016, with some regions 
warming even more.221 In the Northern Hemisphere, permafrost as deep as 20 metres has 
warmed 2–3 ºC in the past two decades.222 Near-surface permafrost has warmed by more than 
0.5 ºC in recent years, and the depth of the summer thaw has increased.223 
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Fig. 11: Soil carbon content in the Arctic Region 

 
Figure 3. Map of estimated 0–3 m SOC storage (kg C m–2) in the northern circumpolar permafrost region. 
Panels show 0–0.3 m and 0–1 m SOC calculated subdivided following NCSCD regions while 1–2 m and 2–
3 m SOC is calculated subdivided for areas of thick thin sedimentary overburden. Projection: Azimuthal 
Equidistant, datum: WGS84. (Hugelius G., et al. (2014) Estimated stocks of circumpolar permafrost 
carbon with quantified uncertainty ranges and identified data gaps, BIOGEOSCIENCES 11:6573–6593, 
6581.) 
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Permafrost in Alaska has set record high temperatures, increasing between 0.21 ºC and 0.66 ºC 
since 2000.224 Active layer thickness—the depth of permafrost that thaws in summer and 
refreezes each winter—is sensitive to near-term warming.225 In Alaska in 2016, active-layer 
thickness was 4 cm greater than the 1996–2016 average, and three-out-of-four interior sites in 
Alaska recorded maximum active-layer thickness values.226 Nordic countries have witnessed a 
general increase in active layer thickness since 1999.227 In Siberia, the active-layer thickness 
recorded the highest thickness in 20 years of observations.228 
 
Globally, permafrost harbours about 1,700 Gt of carbon, which is double the amount of carbon in 
the atmosphere.229 Of this, 190 Gt of carbon lies within the top 30 cm from the surface, which is 
most vulnerable to warming.230 Moreover, half of all carbon in permafrost is within the top three 
metres of soil.231 The extent of permafrost line is moving poleward as permafrost in higher 
latitudes begins to thaw.232 
 
 
Palaeoclimate information on permafrost 
During the Palaeocene-Eocene Thermal Maximum (PETM) (about 55 million years ago), Arctic 
temperatures were more than 10 ºC warmer than today, “causing almost complete loss of 
permafrost”.233 During the early Holocene (about 12,000 years ago), temperatures in the high 
latitudes were 2–4 ºC warmer, so a potential tipping point might exist between 4 and 10 ºC, 
which would be between IPCC scenarios RCP4.5 and RCP8.5.234 If temperatures increase 10 ºC, 
the amount of carbon released from the permafrost region could double.235  
 
 
Projections for permafrost 
Thawing permafrost is not likely to lead to a sudden change in climate. Rather, a prolonged 
release of carbon from permafrost will compound upon projected global emissions of greenhouse 
gases to further contribute to warming.236 However, feedbacks from carbon dioxide and methane 
released from thawing permafrost are often not accounted for in the model projections of future 
climates.237  
 
Failure to avoid permafrost thaw jeopardizes the likelihood that climate warming will stay below 
2 ºC.238 Permafrost thaw has already led to the Arctic being an increasing source for carbon 
emissions.239 While the Arctic presently serves as a carbon sink, the region could become a 
carbon source as early as the mid-2020s from the permafrost carbon feedback.240 Carbon 
emissions from permafrost will continue for centuries, making the Arctic a long-term net carbon 
source by the end of the 23rd century.241 Before that, carbon emissions from permafrost in Siberia 
and North America could reach 90 Pg C by 2100, which is comparable to present land use 
contribution to the carbon cycle.242 
 
Limiting forcing to more aggressive mitigation scenarios (like RCP2.6) rather than allowing 
business-as-usual emissions can reduce permafrost degradation by 29%. 243  By drastically 
limiting emissions as per the RCP2.6 scenario, “85% of the carbon release from the permafrost 
region can still be avoided”.244 Strong mitigation is essential to limit the permafrost-carbon 
feedback because even under the 2 ºC warming scenario, up to 22% of permafrost could be 
thawed by 2100.245 
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There is a large range of possibilities of projected warming from thawing permafrost because of 
incomplete observational knowledge of permafrost deposits as well as a limitation to modelling 
the various soil types, soil moisture, vegetation cover, and other surface conditions associated 
with permafrost thaw.246 Predictions of permafrost area reductions range from 16–20% in 
Canada to projections of permafrost area being reduced 40–57%, 60–90%, or even 80–85% in 
the Northern Hemisphere in other studies.247 The IPCC states that it is “virtually certain” that 
near-surface permafrost will be reduced between 37% and 81% in the future as temperatures 
increase.248 
 
Limiting warming to 2 ºC (or less) will make the permafrost-carbon feedback warming 
negligible whereas allowing business-as-usual emissions and temperature changes will result in 
additional warming from permafrost of about 0.1 ºC (range of 0.04–0.23 ºC) by 2200 and about 
0.42 ºC (range of 0.24–0.78 ºC) in 2300.249 Under business-as-usual emissions, Arctic near-
surface permafrost could decline by 20% (relative to today’s area) by 2040 and by about 66% by 
2080.250  
 
Warming of 1.5 ºC would destroy an additional 4.8 million square kilometres of remaining 
permafrost, while warming of 2 ºC would see an additional 6.6 million square kilometres 
thawed.251 For the RCP scenario that most closely represents the international agreed upon cap of 
2 ºC, emissions from thawing permafrost could raise temperatures an additional 0.05 to 0.15 ºC 
by 2100; 60% of permafrost emissions will occur after 2100 and will jeopardize the 2 ºC 
target.252 Under RCP8.5, 33 to 114 Gt of carbon could be released by 2100, which would lead to 
additional warming of 0.04–0.23 ºC, and under a low-emissions scenario, temperatures remain 
low enough that only 9–23% of permafrost would be affected and the impact on temperature 
would be only 0.04–0.16 ºC by 2300.253 
 
Nearing the end of the twenty-first century, the extent of permafrost would be reduced to 17.6 
million km2 under RCP2.6, 14.1 million km2 under RCP4.5, 13.6 million km2 under RCP6.0, and 
8.5 million km2 under RCP8.5, which amounts to a loss of 25–65% of permafrost extent 
depending on the scenario.254 
 
 
Costs and non-climate impacts from permafrost thaw 
Thawing permafrost can damage built infrastructure that relies on solid ground for support.255 
Roughly four million people within the Arctic and approximately 70% of the current 
infrastructure is susceptible to being impacted by thawing permafrost.256 For example, thawing 
permafrost has already decreased the weight-bearing capacity of building foundations in Siberia 
by 40–50% since the 1960s.257 A 2016 study calculated the economic cost of carbon dioxide and 
methane released from permafrost and found the direct and indirect impacts, not including 
infrastructure damages, could amount to $43 trillion over the next two centuries.258 
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GREENLAND AND ANTARCTIC ICE SHEETS 
 

This section focuses on the ice sheets of both poles. While the loss of ice impacts the local 
regions, the ice lost contributes to global sea level rise, impacting coastal locations around the 
world. 
 
Sea-level rise is accelerating, and sea levels will continue to rise from past, present, and future 
emissions.259 Reducing emissions will limit reduce the rate of sea-level rise and also reduce the 
chance of surpassing crucial tipping points, of which there may exist tipping points for both 
Greenland and Antarctica between 1.5 and 2 ºC.260  
 
Greenland has experienced accelerated melting in the past few decades, and in recent years, there 
have been extreme melt events.261 Over Greenland, there are multiple feedback mechanisms at 
play that can cause even more melting for the ice sheet. Water from the melting ice can itself 
accelerate melting.262 Also, impurities in the ice—from both anthropogenic sources like black 
carbon deposition and natural sources like algae blooms that are amplified when there is added 
water on the ice sheet surface—can reduce the reflectivity of the ice and allow greater warming 
of the surface that will lead to more melting.263 As melting depletes the ice sheet, its overall 
elevation decreases, and because temperatures are generally warmer at lower elevations, the 
surface is therefore warmer that again leads to more melting.264 
 
Of the two parts to Antarctica, depletion of the West Antarctic Ice Sheet (WAIS) is the majority 
of Antarctica’s contribution to sea-level rise, though the East Antarctic Ice Sheet (EAIS) overall 
holds more ice and potential for sea-level rise.265 The glaciers of the WAIS are already thinning 
and in retreat.266 The thinning glaciers are susceptible to increasing water temperatures of the 
Southern Ocean and major ocean currents that pass through the region, and as the glaciers are 
worn away, the glaciers become less grounded to the Antarctic land mass, which allows water to 
get underneath the glacier and more rapidly break the ice into the ocean.267 Some research 
suggests that if the WAIS glaciers are not already beyond a tipping point, they are fast 
approaching a point of no return.268 If the WAIS were to collapse, sea levels could rise several 
meters.269 The EAIS is generally more stable, but the glaciers of the EAIS are similarly 
vulnerable to increased water temperatures and some showing signs of retreat.270  
 
 
Melting ice sheets of Greenland and Antarctica lead to sea-level rise 
The melting of the ice sheets of Antarctica and Greenland pose a global threat due to their 
contributions to global sea-level rise. Sea-level rise is the result of expansion of the warming 
water (thermal expansion) and addition of water through melting glaciers (mass balance 
increase).271 Approximately one third of SLR is from melting Arctic land ice, primarily from 
Greenland.272 From 1971 to 2017, ice from the Arctic region (above approximately 55 ºN) 
contributed 23.0 ± 12.3 mm of sea level; Greenland contributed 10.6 mm, Alaska 5.7 mm, Arctic 
Canada 3.2 mm, and Russian High Arctic 1.5 mm.273 Another third is from thermal expansion of 
the increased temperature of the ocean.274 The remaining third from other glaciers and land ice 
with Antarctica contributing to half of that.275 See Figure 12. In the future, mass loss from 
glaciers will be the dominating contributor.276 
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Fig. 12: Sources of sea-level contribution 

 
During the period 2004–2010, melting Arctic land ice accounted for more than 1/3 of global sea-level rise, 
while thermal expansion caused by warming water contributed another 1/3 and contributions from 
Antarctica, other glaciers and changes in terrestrial storage contributed less than 1/3. (Arctic Monitoring 
and Assessment Programme (AMAP) (2017) SNOW, WATER, ICE, AND PERMAFROST IN THE ARCTIC: 
SUMMARY FOR POLICYMAKERS, 4.) 

 
 
Sea-level rise of the past two centuries has been faster than the previous twenty-seven centuries, 
and it is extremely likely that anthropogenic warming was a predominant cause.277 Sea levels 
rose nearly 20 centimetres between 1901 and 2010.278 Cumulative emissions of what has already 
been emitted through 2015 will result in approximately 1.6 metres of global SLR.279 Future 
emissions from current energy infrastructure will bring future SLR to 2.2 metres and business-as-
usual emissions (RCP8.5) will lead to 7.1 metres of SLR by 2100.280  
 
Lower stabilization temperatures—even when there is a temporary overshoot—and reduced rate 
of warming lead to less sea-level rise during the 21st century.281 If the goals of the Paris 
Agreement are met, sea-level rise will be reduced by 43% of the business-as-usual projection by 
2100.282 The Arctic Monitoring and Assessment Programme (AMAP) estimated SLR of 52 cm 
for a low-emissions scenario and 74 cm for a high-emissions scenario in 2100, both of which are 
higher than the IPCC projections.283 Even after temperatures are stabilised, the sea levels can 
continue to rise as will the risk for extremes events, like storm surge, made worse by raised sea 
levels.284 
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Fig. 13: Sea-level rise for 1.5 and 2 ºC 

 
Figure 13. Upper panel: probabilistic GMT projections for illustrative emission scenarios with a peak 
warming of 1.5 C (left panels) and 2 C (right panels) above pre-industrial levels during the 21st century. 
Lower panels: probabilistic projections of global sea-level rise (SLR) for both scenarios relative to 1986–
2005 levels. Uncertainty bands indicate the likely range (66 % probability within this range) and the very 
likely range (90% probability), respectively. (Schleussner C.-F., et al. (2016) Differential Climate Impacts 
for Policy-Relevant Limits to Global Warming: the Case of 1.5ºC and 2ºC, EARTH SYSTEM DYNAMICS 
7:327–351, 341.) 

 
 
Understanding extreme sea-level rise is important because of the number of people that live in 
coastal zones, which is currently a population of over 625 million people and likely to increase in 
the future.285 With larger average sea-level rise, extreme events relating to sea-level—like storm 
surge from tropical systems— will likely increase in frequency.286  
 
The impacts of sea-level rise include more than general inundation of water and can happen in 
the near future.287 For example, low-lying atolls can see routine annual flooding from increased 
sea levels as early as 2055 with the most extreme emissions scenarios288 and reduction of 
available freshwater as early as 2030 for business-as-usual scenarios and 2055 in a climate 
mitigation scenario.289 
 
The thermal-expansion contribution to sea-level rise is influenced by the emission pathway.290 
Sea-level rise relates to the rate of emissions, not just the total emissions.291 Limiting global 
average warming to 1.5 ºC instead of 2 ºC leads to 17 cm less SLR by 2150 and reduces rate of 
SLR by 1.9 mm/yr.292 As such, climate policies should not exclusively focus on cumulative 
carbon emissions but on the rate of warming, which is influenced by all emissions, including 
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short-lived climate pollutants (SLCPs).293 Reversing sea-level rise requires reducing radiative 
forcing, with negative forcing (through carbon removal) speeding up the process.294 
 
With the current rate of emissions, the melting of land-based ice in the Arctic would add 25 
centimetres of sea-level rise by 2100 with many of the smallest glaciers gone by mid-century.295 
Sea-level rise under a 2 ºC scenario is projected to be around 50 cm (36–65 cm) by 2100, which 
equates to a rate of rise of 5.6 (4–7) mm/yr during the last two decades of the century.296 When 
temperatures are held to 1.5 ºC, sea-level rise projection is 20% less, and the end-of-century rate 
of SLR is decreased by 0.5 mm/yr.297 However, sea levels could well exceed these values if the 
ice sheets become unstable, which would allow greater disintegration of the ice into the ocean.298 
 
 

Fig. 14: Sea-level rise contributions from Greenland and Antarctic 

 
Fig. 4. Peak global mean temperature, atmospheric CO2, maximum GMSL, and source(s) of meltwater. 
Light blue shading indicates uncertainty of sea-level maximum. Black vertical lines represent GMSL 
reconstructions from combined field observations and GIA modeling; gray dashed lines are δ18O-based 
reconstructions. Red pie charts over Greenland and Antarctica denote fraction (not location) of ice retreat. 
Although the peaks in temperature, CO2, and sea level within each time period may not be synchronous and 
ice sheets are sensitive to factors not depicted here, significantly higher sea levels were attained during 
MIS 5e and 11 when atmospheric CO2 forcing was significantly lower than present. See tables S3 and S4 
for data and sources. (Dutton A., et al. (2015) Sea-level rise due to polar ice-sheet mass loss during past 
warm periods, SCIENCE 349(6244):aaa4019-1–aaa4019-9, aaa4019-5.) 

 
 
Tipping points for both Greenland and Antarctica exist between 1.5 and 2 ºC, possibly leading to 
irreversible ice loss from Greenland and collapse of parts of the Antarctic ice sheet as a 
consequence of weaker ice shelves.299 The totality of the changes to the ice sheets of Greenland 
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and Antarctica will not be realised for centuries or even millennia yet the threshold for triggering 
these irreversible changes could like be surpassed within this century.300 
 
Once ice sheets become destabilized, they have the potential to add several metres of sea-level 
rise. To understand what melting ice sheets might contribute to sea-level rise, we must first 
understand the mechanisms through which they are most vulnerable. For example, for the 
Antarctic ice sheet, scientists must determine “which marine-based sectors are most vulnerable 
to collapse and [identify] the forcing (atmospheric or oceanic) that would trigger such events.”301 
By looking at the last glacial period, scientists evaluated the mechanism through which abrupt 
discharges of icebergs can occur,302  finding that warm ocean water can amplify the ice 
disintegration from underneath.303 This could provide insight into how current atmospheric and 
oceanic warming can impact ice sheets.304 
 
Much of the understanding of the sensitivity of the Antarctic to warming temperatures comes 
from evaluation of the Pleistocene and other warmer eras of the past,305 when sea levels were 6–
9.3 m higher than today even though global temperatures were only slightly warmer.306 Only 
about 0.4 m of sea-level rise came from ocean steric effects (thermal expansion), which suggests 
that Antarctic contributed 3.6–7.4 m of sea-level rise and Greenland another 1.5–2.0 m.307 
 
 

GREENLAND 
 
Recent observations 
The threshold for irreversible melting of the Greenland Ice Sheet is global averaged temperature 
of 1.6 ºC, with a potential tipping point for complete melting of the ice sheet at 3.1 ºC.308 
Observations show that since the mid-1990s Greenland has warmed by about 5 ºC in winter and 
2 ºC in summer, and at the same time, the ice sheet has increasingly lost mass from surface melt, 
runoff, and ice discharge.309 Since the mid-1990s, increasing ice discharge and decreasing 
surface mass have led to the Greenland ice sheet being the dominant source of mass-increase-
based sea-level rise, contributing roughly 0.47 mm/yr.310 
 
Greenland has experienced intensification in surface melt in recent years,311 some of which was 
driven by natural climate variability 312  but with an unprecedented increase in this trend 
beginning in 2007.313 Between 2011 and 2014, Greenland lost an average 375 Gt of ice per year, 
twice the rate seen from 2003 to 2008.314  
 
The Greenland ice sheet had relatively low summer ice melt in 2017, which corresponds to 
relatively high albedo over the ice sheet and near average net ice mass loss.315 In 2018, surface 
melt over Greenland was only above average for about one quarter of the summer months, which 
is above 2017’s low-melt year of 16% of days above average.316 The albedo in 2018 was 81.7% 
through June through August of 2018, which was the tied for the lowest summer albedo since 
2000.317 However, this does not take away from the overall melting trends seen in last few 
decades over Greenland. 
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Feedbacks and accelerated melting in Greenland 
With Arctic amplification, not only are temperatures in higher latitudes warmer—which affect 
the melt rate on the Greenland—, the warmer Arctic alters the general atmospheric flow318 that 
results in enhanced warming over Greenland.319 Furthermore, climate change has affected 
atmospheric circulation over Greenland320 in such a way that cloud cover has decreased,321 which 
has added solar radiation and contributed to additional surface melt.322 
 
Because of rising temperatures, Greenland’s peripheral glaciers and ice caps have suffered 
increased surface runoff and mass loss due to the decreasing ability of the firn—porous snow 
that has yet to compressed into glacial ice—to refreeze the meltwater.323 The porous firn in 
Greenland can trap the meltwater of higher elevations before the meltwater can contribute to 
runoff, but surface runoff can overwhelm firn’s storage ability at lower elevations where the firn 
has less ability to retain meltwater.324 
 
Ice-sheet runoff in Greenland increased in 2003–2014, compared to 1976–2002, which is likely 
the result of changing atmospheric circulation from climate change.325 Increased melt-water 
runoff and ice discharge from Greenland’s ice sheet accounted for 0.6 mm/yr of SLR, with melt-
water runoff accounting for 60% and ice discharge for 40%.326 Achieving peak warming this 
century is the best way to maintain the present state of the Greenland ice sheet.327  
 
The Greenland ice sheet was relatively stable from the mid-20th century until 1990, after which 
the glacier began to lose mass at an increasing rate.328 Greenland ice cores revealed a 250 to 
575% increase in melt intensity in the last two decades.329 These most recent melting events are 
beyond that of natural variability and more dramatic than others in the past 350 years.330 Future 
changes to the Greenland ice sheet will likely stem from a combination of increasing 
temperatures facilitating melting331 and non-linear responses—where the melting exceeds what 
may have otherwise been expected from the amount of warming—from the ice-albedo feedback 
of surface meltwater amplifying the speed that the ice melts.332 Retreating ice sheets could also 
lead to taller ice cliffs that are susceptible to slumping and sudden failure that can rapidly raise 
sea levels when the ice enters the ocean.333 
 
On the surface of Greenland, light-absorbing impurities—like black carbon or biological 
material—reduce the albedo, which accelerates melting of surface snow and exposes the ice 
underneath that in turn reduces surface albedo because ice is less reflective than snow.334 Albedo 
can also be altered by naturally occurring algae that is prevalent during the initiation of 
melting.335 These algae blooms can reduce local albedo by up to 20%, contributing to added 
melting in the area that can expedite algae growth.336 As melting is one of the main causes of the 
algae growth, these blooms will become more frequent with a greater occurrence of melting 
events, like the one in 2012.337 
 
Melting on Greenland’s surface is going to continue in the coming decades, which will 
perpetuate the darkening of the surface by revealing the underlying ice.338 On some areas of the 
Greenland ice sheet, algae growth facilitates more surface melting than black carbon.339 
Deposition of light-absorbing impurities on the Greenland ice sheet has not been increasing in 
recent years,340 but as Greenland continues to melt, previously deposited impurities are being 
exposed and further enhancing melting. 341  As such, any additional deposition of these 
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impurities—for example, from emissions as a result of increased shipping and transportation 
within the Arctic region—will also accelerate this already perilous situation. 342 
 
Greenland is affected by other feedback mechanisms the ice-albedo feedback.343 As Greenland 
melts, the ice sheet loses elevation, which can instil further warming because temperatures are 
warmer at lower elevations; this is the surface elevation feedback that is relatively small 
compared to other changes on the ice sheet but can still have an impact on sea-level rise.344 
Melting in Greenland can be affected by increased temperature but also from seasonally 
modified feedback from precipitation falling as rain instead of snow during the winter345 as well 
as increased humidity and clouds in the region that trap in additional warming near the surface 
during both winter and summer.346  
 
 
Greenland’s palaeoclimate and associated sea-level rise 
To get an understanding of the potential changes that could happen with the Greenland Ice 
Sheets, scientists have turned to palaeoclimate records to investigate how the ice sheet has 
changed in the past. Some of the most striking rapid warming events in the palaeoclimate 
record—Dansgaard-Oeschger events347—may have been partially attributed to a decline in 
Arctic sea ice that surrounds Greenland.348 
 
In December 2016, two studies were released with seemingly contrasting analyses of 
Greenland’s past. In Bierman et al. 2016, the authors found that the Greenland ice sheet existed 
continuously over the past 7.5 million years on the eastern side of the island.349 In contrast, 
Schaefer et al. 2016 found that during the Pleistocene (between 11,700 and 2,588,000 years ago) 
only a small ice cap remained on the eastern highlands of Greenland, which means that more 
than 90% of the Greenland Ice Sheet had melted.350  
 
Duration and amount of warmth influences the stability of the Greenland Ice Sheet as well as its 
potential for deglaciation; extreme temperature reduces the ice sheet within a few thousand or 
even several hundred years.351 The model used in the Schaefer et al. 2016 study revealed that the 
Greenland ice sheet was almost completely absent for a period of time in the Pleistocene, which 
is incompatible with existing ice-sheet models, implying that further analysis into the climate-
driving scenarios is necessary to replicate the deglaciation.352 
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ANTARCTICA 
 

 
Fig. 15: Geography of Antarctica—glaciers, ice shelves, ice streams, and basins 

 
Fig. 1. Antarctic location map and modern properties. (a) Locations of features named in the text. EAIS = 
East Antarctic Ice Sheet, WAIS = West Antarctic Ice Sheet, I.S. = ice stream, Gl. = glacier. Yellow shading 
shows the areas of grounding line retreat after 5000 yr in the main retreat simulation of Fig. 3, and cyan 
areas are modern floating ice shelves. (Pollard D., et al. (2015) Potential Antarctic Ice Sheet retreat driven 
by hydrofracturing and ice cliff failure, EARTH & PLANETARY SCIENCE LETTERS 412:112–121, 113.) 

 
 
West Antarctic Ice Sheet (WAIS) 
In recent years, mass loss from Antarctica has accelerated, mainly from the Antarctic Peninsula 
and West Antarctica.353 Glaciers that flow into the Amundsen Sea (on the west coast of West 
Antarctica) have thinned, suggesting that unstable and irreversible retreat of the groundling line 
is underway.354 Researchers have surmised that the Pine Island Glacier’s grounding line is 
“probably engaged in an unstable…retreat,” which has led to an equivalent of 3.5 to 10 mm of 
sea-level rise to be seen in the next twenty years.355 
 
The glaciers in West Antarctica that feed into the Amundsen Sea are rapidly thinning and are the 
largest contributors to sea-level rise from Antarctic sources.356 In the past four decades, the Pine 
Island Glacier and other glaciers in the area have thinned at an accelerating rate.357 The Pine 
Island Glacier is responsible for 20% of total ice discharged from West Antarctica. 358 
Observations have shown that the Pine Island Glacier retreat, which is potentially irreversible, is 
projected to continue for at least the next century.359 Similarly, the Thwaites glacier may also 
already be destabilised, making rapid collapse a possibility, even if it takes centuries to fully to 
come fruition.360 
 
Hypotheses about the cause of the continued retreat range from ice-ocean interactions to a 
retreating grounding line.361 The grounding line is the point where a glacier begins to float as an 
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ice shelf.362 Channel density, basal-melt rate, and grounding line depth alterations could create 
destabilization of the West Antarctic ice sheet through increased access to warmer water beneath 
the ice shelves that would increase calving and reduce ice shelf area.363 
 
Circumpolar Deep Water is responsible for creating the basal channels whereby the relatively 
warmer water (when compared to the temperature of the ice) influences the melt rates of the ice 
shelves surrounding the Amundsen and Bellingshausen Seas.364As the ice shelves become 
thinner, they provide less resistance for the ice flowing to the ocean, leading to accelerating ice 
deposition into the sea and increasing rates of sea-level rise.365 The warmer water seeps 
underneath the ice shelves and facilitates more rapid melting that can lead to ice fracture and 
weakened ice shelves.366 
 
The Pine Island Glacier melt is accelerating from sub-ice-shelf melting.367 Ocean-driven melt 
can greatly influence grounding-line retreat and thus the stability of ice sheets, but when 
atmospheric concentrations of greenhouse gases lead to excessive warming, atmospheric 
warming becomes a larger player in ice sheet demise.368 Because ice shelves help impede the 
flow of ice into the sea and stabilize the grounding zones, the retreat of these shelves can trigger 
runaway instability.369 
 
The WAIS appeared to achieve stability between 2009 and 2013, but in 2014 and 2015, 
anomalous rifts appeared that “initiated in the centre of the ice shelf and propagated toward the 
margins.”370 These recent splits in the ice sheet are different than the typical style of ice shelf 
rifting because it begins in the centre of the fast-flowing ice shelf.371 
 
Using sediment cores, a 2017 study found that the thinning and retreat of the Pine Island Glacier 
in West Antarctica was triggered in the 1940s and enhanced by subsequent warming such that 
the ice sheet retreat continued even after the climate forcing weakened.372 El Niño conditions 
between 1939 and 1942 led to warming in West Antarctica in the years that followed, and it was 
during this time that an ocean cavity appeared and caused the groundling line retreat that 
eventually unpinned the Pine Island Glacier ice shelf in the early 1970s.373 The implication of 
this study is that the warming in the 1940s began a chain of events that perpetuated ice shelf 
thinning long after the warming had subsided and conditions returned to normal, suggesting that 
“ice-sheet retreat can continue even when the forcing reverts to its earlier state.”374 
 
As individual glaciers collapse, unstable conditions could easily propagate throughout the basin 
and sow instability for the entire ice sheet.375 
 
 
East Antarctic Ice Sheet (EAIS) 
The Totten Glacier in Antarctica is crucial to the climate system because it is the largest 
discharger of ice in East Antarctica.376 While the grounding line retreat of the Totten Glacier is 
smaller than that of the Amundsen Sea sector of the West Antarctic, the Totten Glacier holds 
four times the amount of sea-level equivalent such that “any amount of grounding retreat of 
[Totten Glacier] may still bare significant consequences for sea-level rise from Antarctica.”377 If 
all of the ice in the Totten Glacier were to melt, it would contribute 3.9 m to global sea level.378 
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The grounding line of the Totten Glacier in Antarctica retreated by 1–3 km from 1996 to 2013, 
which suggests that the ice is “flowing faster than the speed required to maintain a state of mass 
balance with snowfall in the interior region.”379 These changes are likely the result of forcing 
from the warmer ocean water that is fuelling high melt rates in the region.380 
 
Studies have shown that Circumpolar Deep Water has contributed to glacier retreat in West 
Antarctica, and researchers have found that a similar process could disrupt the Totten Glacier in 
East Antarctica, potentially contributing 3.5 metres of sea-level rise, which is almost equivalent 
to the sea-level rise potential from the total of the West Antarctic Ice Sheet.381 The Totten 
Glacier is important to ice sheet discussions because it has the fastest thinning rate of glaciers in 
East Antarctica.382 The Totten Glacier may be strongly sensitive to ocean temperatures given that 
it has steadily been losing mass over the past twenty-six years due to a speeding up of its main 
flow.383 
 
Winds travelling down the slopes of Antarctica’s mountains warm the surface and contribute to 
snow erosion, amplifying surface warming by revealing the lower-albedo ice beneath the snow 
layer.384 Based on observational records, increased temperatures and reduced firm storage—
similar to that seen in Greenland—are projected to occur more frequently in the future and 
amplify this feedback risk on the ice shelf of East Antarctic ice sheet.385 
 
 
Sea-level rise contribution from Antarctica 
Limiting warming to 1.5 or 2 ºC will prevent substantial loss of Antarctic ice, and as such, 
emissions of the next few decades will have heavy influence on the long-term changes to 
Antarctica.386 Since 1979, the West Antarctic Ice Sheet has contributed 6.9 ± 0.6 mm of sea-level 
rise387 and East Antarctic Ice Sheet has contributed 4.4 ± 0.9 mm of sea-level rise.388 
 
Using an ice sheet dynamics model that reflected the changes to Antarctica during the Pliocene 
and the Last Interglacial, DeConto and Pollard (2016) calculated that Antarctica could contribute 
more than a metre of sea-level rise by 2100 if emissions are not curbed, while also showing 
potential sea-level rise of half a metre for other scenarios.389 Incorporating this palaeoclimate 
information with IPCC projections, Antarctica did not contribute to sea-level rise by 2100 for 
RCP2.6, but for RCP4.5, sea level rose 32 cm by 2100 with almost complete collapse of the 
West Antarctic Ice Sheet by 2500, which produces nearly 5 m of sea-level rise.390 Under 
RCP8.5, sea levels rose 77 cm by 2100 and the WAIS collapsed within 250 years.391 
 
Grounding lines are important to the stability of the Antarctic glaciers, and recently, the pace of 
retreat of the grounding lines has been increasing.392 Thinning ice shelves in the Antarctic can 
impact the entire ice shelf by accelerating overall ice flow.393 Pollard et al. (2015) found that 
hydrofracturing from surface melt could enhance draining into ice-sheet crevasses and weaken 
the grounding lines, which limits the buttressing abilities of the ice sheet and leads to accelerated 
ice sheet retreat and collapse that can lead to approximately 17 m of global sea-level rise.394 
EAIS collapse is connected to temperature increase because the grounding line is above sea level 
and the ocean warming does not have as strong of an impact.395 However, the WAIS undergoes 
major collapse with 2 ºC of ocean warming and several hundred to a thousand years of impact on 
the grounding lines.396 
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Antarctic sea ice 
In addition to forming in opposing seasons, Antarctic sea ice is vastly different from Arctic sea 
ice. While the Arctic is a large ocean surrounded by land masses, Antarctica is a large land mass 
surrounded by water, and as such, the sea ice that forms is not bounded and is therefore free to 
float to warmer water, which leads to Antarctic sea ice melting nearly every year in stark contrast 
to the Arctic’s multi-year ice.397 For similar reasons, Antarctic sea ice is not as thick as Arctic 
sea ice.398 Antarctic sea ice is also more susceptible to melting from solar radiation than Arctic 
sea ice because Antarctic sea ice only extends to about 75 degrees south latitude whereas the 
Arctic sea ice frequently extends further equatorward.399 
 
In contrast to the repeated record lows for Arctic sea ice extent, the Antarctic sea ice set a record 
maximum in September 2014, surpassing the previous record by about 0.5 million square 
kilometres.400  In September 2017, the Antarctic sea ice reached its maximum earlier than usual 
and has been at record or near record lows since September 2016.401 In 2018, the Antarctic sea 
ice reached its maximum extent later than usual,402 and it was the fourth lowest maximum extent 
in the satellite record, measuring 18.15 million square kilometres (180,000 square kilomteres 
above the record low.403 
 
Antarctic sea ice hit a record low for minimum sea ice extent in March 2017, extending 2.11 
million square kilometres, 404  which is 740,000 square kilometres below the 1981–2010 
average.405 During this time, air temperatures were between 1.0 and 2.5 ºC above the 1981–2010 
average.406 That year, the Antarctic sea ice extent began its regrowth but to a lesser extent than 
the long-term record due to warmer-than-average sea surface temperatures.407 In 2019, the 
Antarctic sea ice minimum was reached on both 28 February and 1 March 2019 and was the 
seventh lowest on record, reaching an extentof 2.47 million square kilomets.408 
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LONG- AND SHORT-TERM PRIORITIES AND SOLUTIONS 
 
This section addresses the priorities and solutions for protecting the Polar Regions. The priorities 
relate to general actions that must be taken to slow warming while the solutions present specific 
examples of what can be done to mitigate climate change.  
 
The first priority is to reduce short-lived climate pollutants (SLCPs) because they have the 
potential to slow the rapid pace of warming and avoid surpassing crucial tipping points. The 
second priority is to achieve long-term climate stability through CO2-focused mitigation. The 
third priority is carbon dioxide removal (CDR), which has the potential to limit the likelihood of 
catastrophic and existential threat by removing excess carbon from the atmosphere. 
 
The solutions presented here cover a range of suggestions to slow the rate of warming and reduce 
future warming overall. The solutions encompass many laws and policies that can encourage 
transition to more sustainable future. This Primer will focus on reducing SLCPs because of their 
ability to reduce near-term warming and the current climate being precariously close to offsetting 
self-reinforcing feedbacks and tipping points in the Polar Regions.  
 
 

PRIORITIES 
 
Securing long-term climate stability through a three-lever approach 
The climate must be stabilized well below 2 ºC—aiming for 1.5 ºC—to ensure long-term climate 
stability. Committed warming may already be as high as 2.4 ºC, but aerosols provide cooling 
such that only approximately 1.0 ºC of warming has been observed.409 The Arctic is already 
twice as warm as the global average,410 and Arctic amplification is poised to become stronger in 
the future, which will have impacts within and beyond the Arctic.411 Following business-as-usual 
practices, warming could exceed 1.5 ºC within decades.412  
 
To fully stabilize the climate, emissions of both SLCPs and CO2 must be drastically reduced, and 
to increase the odds of avoiding catastrophic warming, we must also extract carbon from the 
atmosphere.413 The benefits of SLCP mitigation will be felt within decades, but past and present 
CO2 emissions will continue to cause warming through this century and beyond because of 
CO2’s long lifetime and the thermal inertia of the oceans.414 Fast action on these first two levers 
must happen as quickly as possible to meet the Paris Agreement targets and to avoid surpassing 
tipping points and triggering self-reinforcing feedbacks; carbon dioxide removal, as the third 
lever, will help compensate for carbon emissions. 
 
Greenhouse gas emissions do not have to become net zero to achieve 1.5 or 2 ºC of warming, so 
long as mitigation measures are incredibly drastic and rapid, with total emissions falling to 10 
GtCO2-eq per year around 2033 to stay below 1.5 ºC of warming and 16 GtCO2-eq per year 
around 2060 to stay below 2 ºC of warming.415 However, these reductions to total GHGs still 
demands net zero CO2, though that is easier to achieve because it demands far less negative CO2 
emissions.416 
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Achieving near-term success through SLCP mitigation 
Near-term reductions in emissions of SLCPs, particularly black carbon and methane, are crucial 
to slowing the pace of warming in coming decades417 and stabilizing the Arctic and Antarctic.418 
Cutting black carbon and methane can decrease the rate of global warming by half419 and overall 
warming in the Arctic by two-thirds.420  
 
Reductions of CO2 would avoid 0.1–0.3 ºC of warming by 2050 and 1.6–1.9 ºC by 2100.421 
Reducing SLCPs yields quick results in the crucial near-term, avoiding 0.6 ºC of warming by 
2050 and 1.2 ºC by 2100.422 Approximately half of the avoided warming in 2050 from reducing 
SLCPs and 40% of the 1.2 ºC avoided warming at 2100 can be accomplished with CO2-
dedicated measures.423  
 
 
Carbon neutrality must be achieved by mid-century 
Carbon neutrality—zero anthropogenic CO2 emissions such that no additional CO2 is added to 
the atmosphere—must be achieved by 2060–2070 to attain a stable climate. This can be done 
through reducing energy intensity and decarbonisation of the energy sector. Overall, cumulative 
emissions of CO2

424 must be limited to 3.7 trillion tonnes.425 At the current pace of emissions, 
this budget could be exhausted by 2030.426 
 
Existing carbon-intensive infrastructure will not vanish overnight, and as a result it will take 
decades before sufficient infrastructural changes are able to achieve carbon neutrality.427 Fossil 
fuel infrastructure and the policies in place to facilitate the infrastructure create a carbon lock-in 
where a future transition to low-carbon alternatives is more costly in the long term.428 Making a 
future switch to low-carbon technology requires these conventional technologies to be retired 
early, which adds to the cost.429 This is because fossil fuel infrastructure, like coal-fired power 
plants, has a multi-decade lifetime.430 Research has shown that extensive proliferation of 
renewable energy sources—wind and solar, primarily—can be utilised to provide a substantial 
portion of the energy sector, approaching 80% within decades.431 
 
Renewables had the highest growth rate of all energy sources for 2017,432 with China and the 
U.S. contributing about half of increase in renewable energy generation.433 Overall in 2017, 
global energy demand increased by 2.1%, which is more than double the average increase of the 
previous five years, and roughly 40% of this growth was from China and India.434 Between 2014 
and 2016, energy-related CO2 emissions remained flat, but in 2017, emissions grew by 1.4%.435 
This increase in energy related CO2 emissions comes from an increase in overall demand—
especially electricity demand—and slowed improvements to energy efficiency.436 Electricity 
demand increased, of which China and India made up a majority. 437  Energy efficiency 
improvements were slowed in 2017 because of weaker policies and lower energy prices.438 
 
 
Avoiding catastrophic climate threat with carbon dioxide removal (CDR) 
Absent carbon removal strategies, the carbon neutrality and super pollutant levers will only be 
able to limit the 50% probability warming to below 2ºC while still risking dangerous warming in 
both the near-term and long-term.439 Beyond looking at the 50% probability of passing a 
temperature target, there are lower-probability (5%) but higher-impact warming possibilities, 



 42 

which consider uncertainties of future emissions, self-reinforcing climate feedbacks (water 
vapor, clouds, and snow/ice albedo), carbon cycle feedbacks (decrease in land/ocean uptake, soil 
carbon release from permafrost, and carbon emissions from wetlands), and aerosols.440 This 5% 
probability—a 1 in 20 chance—is referred to as the “fat tail”. Carbon dioxide removal strategies 
could pull down sufficient CO2 from the atmosphere to limit the likelihood of the climate 
warming into this “fat tail” range.441  
 
Combined with SLCP and CO2 mitigation, CDR will limit cumulative emissions such that there 
is a 50% chance of staying under 1.5 ºC, reducing the likelihood of catastrophic warming in the 
long-term.442 More rapid mitigation will require less CDR to maintain a safe climate.443 
 
 

SOLUTIONS 
 
Maintaining a safe climate requires fast-action mitigation of both SLCPs and CO2.444 Mitigating 
SLCPs is not a substitute for CO2 mitigation as both are necessary for keeping warming below 
1.5 ºC. Some CO2 will remain in the atmosphere for several millennia,445 with approximately a 
quarter of CO2 emissions lasting more than 500 years.446 Furthermore, the added warming from 
reducing sulphates can be offset by reduction in methane and black carbon.447 
 
 
Mitigation measures to reduce SLCPs 
SLCP emissions can be quickly reduced through existing technologies, laws, and institutions. 
The United Nations Environment Programme (UNEP) & World Meteorological Organization 
(WMO) (2011)448 and Shindell et al. (2012)449 provided examples of potential measures for 
curbing black carbon and methane emissions, and these measures are summarized below.  
 
With extensive implementation of the mitigation measures for methane and black carbon, 38% of 
global methane and 77% of global black carbon emissions can be eliminated.450 If the above 
measures were implemented by 2030, future warming would be reduced by 0.5 ºC globally, 
which would amount to reducing warming in the Arctic by two-thirds in the next thirty years.451 
Additionally, these measures can prevent losses to staple crops and avoid millions of premature 
deaths worldwide.452 Notably, the regions making reductions in black carbon and tropospheric 
ozone get most of the benefits.453 

Methane-control measures include: 
• Pre-mine degasification, recovery, and oxidation of methane from ventilation air from 

coal mines; 
• Recovery and utilisation (instead of venting) of gas and fugitive emissions from oil and 

natural gas production; 
• Reduce leakage from long-distance natural gas transmission and distribution; 
• Landfill gas collection; 
• Upgrade wastewater treatment with gas recovery and overflow control; 
• Decrease livestock emissions through animal feed and manure management; and 
• Intermittent aeration of continuously flooded rice paddies. 
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Black-carbon control measures include: 
• Improve diesel vehicle emissions standards and install diesel particulate filters; 
• Replace traditional cooking and heating stoves with clean burning modern fuel stoves; 
• Replace brick kilns with vertical shaft and Hoffman kilns; 
• Replace traditional coke ovens with modern technologies, including end-of-pipe 

abatement measures; 
• Eliminate high-emitting on- and off-road diesel vehicles; 
• Ban open burning of agricultural waste; and 
• Replace kerosene wick lamps with modern clean lighting technologies. 

 
The Arctic Council Expert Group on Black Carbon and Methane developed a similar list of 
recommendations for reducing emissions of black carbon and methane.454 Recommendations 
from the Expert Group include: reducing black carbon emissions from diesel powered mobile 
sources through policies and initiatives that encourage particulate filters and alternative fuels455; 
reducing methane and black carbon emissions from leaking, venting, and flaring from the oil and 
gas sector456; reducing black carbon emissions from biomass combustion appliances, including 
employing energy efficiency measures and incentivizing replacement of older appliances457; and 
avoiding methane emissions associated with solid waste disposal.458  
 
Arctic States could lead by example in reducing emissions of black carbon and methane.459 As 
noted above, Arctic States account for ten per cent of the global emissions of black carbon but 
nearly a third of the warming in the Arctic.460 For methane, Arctic States account for about fifth 
of the global emissions, but also have the largest potential for abatement of emissions.461  
 
Methane is a well-mixed GHG, which makes it difficult to pinpoint the exact source, but this also 
means that global reductions will still help the Arctic region.462 The main source of methane 
include: fossil fuel production, transmission, and distribution; livestock; rice cultivation; and 
solid waste and wastewater.463 As a precursor for tropospheric ozone, methane is responsible for 
approximately half of the radiative forcing from tropospheric ozone, and reducing methane will 
decrease the overall forcing of tropospheric ozone, especially in the Arctic where distant 
methane emissions contribute to the formation of tropospheric ozone.464 
 
Reducing SLCP emissions from diesel engines may be one of the simplest and most effective 
ways to mitigate near-term climate forcing.465 California has already accomplished decreased 
concentrations of black carbon reductions of 50% between 1989 and 2008 through a reduction in 
emissions from diesel fuel.466 On-road and non-road mobile sources accounted for 61 per cent of 
black carbon emissions in the Arctic States, which can be curbed through a myriad of policies, 
including: emissions standards for new vehicles; programs targeting the replacement or 
upgrading of legacy vehicles; standards to reduce sulphur levels in fuels and enable usage of 
diesel particulate filters; and alternate fuels and transportation methods that will reduce 
emissions overall.467 
 
Improvements within the domestic heating and cooking sectors throughout Asia would cut black 
carbon and have the largest impact on the Arctic.468 Kerosene-fuelled wick lamps are a 
significant source of black carbon and can be replaced with affordable alternatives that are 
available now.469 Eliminating emissions of black carbon from traditional solid biomass stoves by 
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replacing them with improved cook stoves would reduce black carbon direct climate effects over 
South Asia by about 60%.470 
 
Most of the control measures to reduce black carbon and tropospheric ozone—and its precursor, 
methane—can be implemented immediately using existing technologies and often using existing 
laws and institutions. 471  Half of the identified mitigation measures for SLCPs can be 
implemented with a net cost savings for those making the investment.472 The benefits of reducing 
emissions of methane are valued at up to $5000 per metric ton, which is substantially higher than 
the typical abatement cost of less than $250.473  
 
Additionally, certain strategies that reduce CO2 will also reduce SLCPs. For instance, switching 
to renewable energy sources will reduce methane and tropospheric precursors like carbon 
monoxide and nitrogen oxides that are emitted during fossil fuel consumption and production.474 
Some 70% of methane emissions and 30% of black carbon emissions can be mitigated through 
CO2-targeting actions.475 
 
While many emissions-reducing measures can provide a net cost savings alongside significant 
societal and health benefits,476 some policies will require overcoming financial implementation 
barriers.477 Economic incentives can stimulate voluntary action to upgrade engines and fuels or 
even facilitate full replacement.478 Combined use of diesel particulate filters and low-sulphur fuel 
has proven “highly effective, net beneficial, and widely adopted across most participating 
countries”.479 These policies “can nearly eliminate black carbon emissions” but can be costly 
because of the need to upgrade refineries and maintain fuel distribution chains to avoid 
contamination with high-sulphur fuels.480 
 
 
Co-benefits from SLCP reductions 
Reductions in emissions of SLCPs have other benefits besides the direct climate benefits.481 For 
example, reducing black carbon will not only help avoid climate warming, but as a component of 
particulate matter—a harmful air pollutant—reducing black carbon will also lead to improved air 
quality.482 
 
According to the World Health Organization (WHO), there is no safe level of exposure to fine 
particulate matter, of which black carbon is a component.483 Air pollution was responsible for 7 
million deaths worldwide in 2012, and most of those deaths occurred in the Western Pacific and 
South East Asian regions.484 Of these deaths, 3.7 million were from ambient air pollution485 and 
4.3 million from household air pollution, with some one million deaths attributable to a 
combination of the two.486 If air pollution is not curtailed, premature deaths could double by 
2050.487 
 
In the U.S., air pollution mitigation yielded an estimated $30 in benefits for every dollar spent on 
air pollution controls since 1970, for a total of $1.5 trillion in benefits for the $65 million 
invested.488 Since the passage of the Clean Air Act, the U.S. has reduced six common air 
pollutants by 70% while, at the same time, GDP has risen 250%.489 
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In addition to reducing the rate of warming, reducing SLCPs will reduce the rate of sea-level rise 
(SLR) by 18% by 2050 and 24% by 2100, compared to a baseline of business-as-usual; reducing 
CO2 will have a negligible effect mid-century but will reduce the rate of SLR by 24% in 2100.490 
Cumulative SLR at 2100 is reduced 31% with both CO2 and SLCP mitigation measures, with 
most of the reduction coming from SLCP mitigation.491 See Figure 16. 
 
Methane mitigation would have the greatest impact in slowing SLR, followed by CO2 and then 
the other SLCPs.492 Delaying mitigation of SLCPs until 2040 will decrease the impact of both 
CO2 and SLCP mitigation on SLR this century by approximately 30%.493 As mentioned earlier, 
slowing the rate of warming also slows the rate of sea-level rise because of the thermal 
expansion component to SLR.494 
 
 
Fig. 16: Predicted reductions in 21st century sea-level rise due to SLCP and CO2 mitigation 

 

Figure 1. Avoided sea-level rise at 2100 due to aggressive mitigation of long-lived CO2 and SLCPs. Such 
aggressive actions can reduce the rise in sea levels by 35 cm (uncertainty range is 17–70 cm) from the 
projected sea-level rise of 112 cm (49–210 cm) under a business-as-usual scenario for emissions 
(Representative Concentration Pathway (RCP) 6.0). The pie chart shows percentage contribution of each 
pollutant. Mitigation of the SLCP methane would lead to reductions in tropospheric ozone, another SLCP, 
and hence the pie chart includes both. As a long-lived pollutant, CO2 plays a substantial role (blue 
section), but reduction in SLCPs (shown in darker colours) would lead to a larger degree of avoided sea 
level. (Under a more intensive business-as-usual RCP8.5 level, reductions in CO2 would increase the share 
of CO2 mitigation to 50%). (Victor D. G., et al. (2015) Soot and short-lived pollutants provide political 
opportunity, NATURE CLIMATE CHANGE 5:796–798, 796 (based on Hu A., et al. (2013) Mitigation of short-
lived climate pollutants slows sea-level rise, NATURE CLIMATE CHANGE 3:730–734).) 

 
 
SLCPs directly impacting the Arctic  
Reducing black carbon is especially beneficial for the Arctic because black carbon not only 
warms the atmosphere but also facilitates additional warming. Once black carbon is deposited on 
the snow and ice, it reduces the reflectivity (albedo) and absorbs extra solar radiation, which 
leads to further melting than pristine snow and ice.495 Since 1890, black carbon has contributed 
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0.5–1.4 ºC of warming to the Arctic, while tropospheric ozone—an SLCP and precursor to 
methane—contributed 0.2–0.4 ºC of warming.496 
 
Asian nations contribute the largest portion of emissions that lead to Arctic warming, but the 
Arctic is most sensitive to emissions of SLCPs from Arctic nations.497 Arctic States are 
responsible for 30% of black carbon’s warming effects in the Arctic while only producing 10% 
of the emissions,498 but shipping throughout the region is projected to increase as declining sea 
ice makes transportation through the region easier, which will increase the localized 
emissions. 499  Through the Arctic Council, the Arctic States and some Observer States 
“developed and submitted inventories of black carbon and methane emissions”, with many 
submitting methane projections and some submitting black carbon projections.500 As a result, 
methane emissions are projected to remain the same between 2013 and 2030 while black carbon 
emissions are projected to decrease by 24% from 2013 levels by 2025.501 
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OPPORTUNITIES FOR STENGTHENING SLCP MITIGATION 
 

This section covers the existing legal and political frameworks and organizations on 
international, regional, national, and subnational levels. In many instances, these frameworks can 
be strengthened to increase reductions that will provide additional benefit to the climate. At the 
same time, existing legal and political strategies can provide an example to other sectors or 
regions where mitigation efforts can be added. 
 
Various organizations and institutions around the world provide avenues for discussing and 
employing mitigation measures in different sectors. Some focus on mitigation specific emissions 
like through the work of the Climate and Clean Air Coalition (CCAC) with SLCPs, while others 
focus on a region like the Arctic Council’s work with all issues involving the Arctic region, not 
just environmental concerns. There are also international bodies that focus on specific sectors 
that are working to reduce emissions and would be ideal candidates for furthering mitigation 
efforts. 
 
As climate impacts to the Arctic are already occurring and will continue even with emissions 
reductions, Arctic communities must continually improve knowledge and assessment of the best 
way for the Arctic to adapt. 502  International cooperation is needed to develop long-term 
commitments to funding, increase understanding and application of traditional and local 
knowledge, and coordinate efforts with observation networks and stakeholders.503 Additionally, 
raising public awareness of the implications of changes in to the snow and ice of the Arctic will 
help build support for fast action.504 
 
Below are some selected international and national laws and policies working to reduce 
emissions as well as some organizations that are implementing similar strategies. 
 
 
The UN Framework Convention on Climate Change (UNFCCC) and the Paris Agreement 
The UN Framework Convention on Climate Change (UNFCCC) was concluded 9 May 1992 and 
entered into force nearly two years later, and the main objective of the treaty is the “stabilization 
of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous 
anthropogenic interference with the climate system.”505  
 
The Parties to the UNFCCC re-emphasized their commitment to stopping climate change in 
December 2015 with the Paris Agreement.506 The Paris Agreement entered into force on 4 
November 2016,507 following meeting the requirements of the Agreement that at least 55 Parties 
to the UNFCCC that account for at least an estimated 55% of the global GHG emissions have 
ratified, accepted, approved, or acceded.508 Of the 197 Parties to the UNFCCC, 180 Parties have 
ratified the treaty, though nearly every country signed onto the Agreement (as of August 2018), 
though the United States has stated its intent to withdraw from the treaty.509  
 
The main goal of the Paris Agreement is to hold global temperatures to “well below 2 ºC above 
pre-industrial levels” and for Parties to pursue limiting the temperature increase to 1.5 ºC.510 
Parties are to peak emissions as quickly as possible—though developing countries are 
understood to have additional time.511  
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Fig. 17: Probable tipping points in the range of the Paris Agreement goal 

 
Figure 1 | Tipping elements in context of the global mean temperature evolution. Shown is the global-mean 
surface temperature evolution from the Last Glacial Maximum through the Holocene, based on 
palaeoclimatic proxy data (grey and light blue lines, with the purple and blue shading showing one 
standard deviation), instrumental measurements since 1750 ad (HadCRUT data, black line) and different 
global warming scenarios for the future…. Threshold ranges for crossing various tipping points where 
major subsystems of the climate system are destabilized have been added from ref. 8, 14 and 37–40. (Note 
that we follow the tipping point definition of Lenton et al. which does not require irreversibility, so that sea 
ice cover is included here.) The range for the West Antarctic Ice Sheet (WAIS) has been adapted to account 
for the observation that part of it has probably tipped already. THC, thermohaline circulation; ENSO, El 
Niño–Southern Oscillation; EAIS, East Antarctic Ice Sheet. (Schellnhuber H. J., et al. (2016) Why the right 
climate target was agreed in Paris, NATURE CLIMATE CHANGE 6:649–653, 650.) 

 
 
Countries are to develop national mitigation measures and convey these intentions through their 
Nationally Determined Contributions (NDCs).512 These pledges are to be revised every five 
years,513 with each subsequent NDC reflecting increased ambition for mitigation.514 Each Party 
must regularly report a national inventory of the sources and sinks of anthropogenic emissions, 
which is necessary to track the progress towards satisfying the pledges made in the NDCs.515 The 
Paris Agreement also requires Parties to routinely check on the progress towards achieving the 
goals of the Agreement, referred to as the “global stocktake”, and the first stocktake will occur in 
2023 with subsequent ones occurring every five years.516 
 
The NDCs are a critical feature of the Paris Agreement, but as they are each individually 
authored by the Parties, there exists significant various in what GHGs are included, how they are 
measured, and how the Party intends to reduce their emissions.517 As the next round of NDCs are 
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due by 2020, countries could opt to strengthen their overall goals for emissions reductions while 
also specifying attention to SLCPs.518 
 
The initial mitigation targets from the NDCs are not sufficient to meet the Paris temperature 
goal.519 With the current NDCs, the emissions between now and 2030 are likely to exceed the 2 
ºC target.520 In many cases, limiting warming to 1.5 ºC requires more rapid mitigation in the 
near-term and also increased energy efficiency.521  
 
Carbon intensity of energy in the future depends upon the infrastructure put in place today, and 
promoting a continued decline in fossil energy requires changes to happen sooner rather than 
later.522 Many of the scenarios that achieve 2ºC while also utilizing fossil energy depend on 
large-scale deployment of carbon capture and storage (CCS), and without such technologies, 
“most models cannot produce emission pathways consistent with the 2ºC goal.”523 Reality is far 
from matching the models because the models suggest having 4000 facilities by 2030 but only 
tens have been proposed by 2020.524 
 
Renewables are on par with what should be happening under the 2ºC scenarios.525 But this level 
of deployment of renewables is not enough. Based on the scenarios, the current NDC pledges do 
not cut sufficient emissions by 2030 to stay on track while at the same time CCS technologies 
“deviate substantially from long-term requirements to meet the Paris goal,” and “there is a lack 
of scenarios exploring opportunities and challenges of…low CCS and high renewables.”526 
 
Further action is needed and must be achieve in the near-term to keep 1.5 ºC as an attainable 
goal, which can be achieved by countries stepping up their obligations in the near term, 
expanding the NDCs to include additional sectors and greenhouse gases, working within 
international sectors like aviation and maritime transport, and promoting additional national and 
subnational initiatives. 527  Achieving the Paris goals requires a dramatic shift in energy 
production where coal, oil, and gas are exchanged for exponentially scaled up renewable energy 
and energy efficiency technologies.528 Even staying in the Paris-approved range of temperatures 
could lead to tipping elements being shifted into a new regime, including the possibility that the 
ice sheet stability in West Antarctica may have already been compromised.529 
 
 
International action on HFCs through the Kigali Amendment to the Montreal Protocol 
Hydrofluorocarbons (HFCs) are factory-made chemicals primarily used as refrigerants, foam-
blowing agents, and other applications. HFCs were used to replace chlorofluorocarbons (CFCs) 
and hydrochlorofluorocarbons (HCFCs), but in many cases are no longer needed, as alternatives 
are available. While HFCs do not deplete the ozone layer, they are powerful greenhouse gases, 
the usage of which has increased 10–15% annually in recent years.530 CFCs and HCFCs, in 
addition to depleting the ozone layer, are also powerful greenhouse gases, and by phasing out 
these chemicals, the Montreal Protocol has provided climate mitigation equivalent to 135 billion 
tonnes of CO2.531 In October 2016, the Parties to the Montreal Protocol agreed to the Kigali 
Amendment, which will gradually phasedown HFCs.532 Phasing down HFCs can avoid up to 0.5 
ºC of warming by 2100, and the Kigali Amendment will achieve most of that avoided warming, 
with the remainder possible through acceleration of the Kigali phasedown schedule.533 
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The Kigali Amendment entered into force 1 January 2019.534 As with previous transitions under 
the Montreal Protocol,535 developed countries (non-Article 5 Parties) will act first to phase down 
HFCs with developing countries (Article 5 Parties) following some years later.536 Substitutes for 
HFCs already exist in almost every sector, which will help to speed the transition. Alternatives 
include fluorinated hydrofluoroolefins (HFOs), natural refrigerants, and not-in-kind 
alternatives.537  
 
Previous transitions under the Montreal Protocol facilitated improvements in energy efficiency in 
the appliances that utilise these refrigerants, and similar benefits can be achieved during the 
transition away from high-GWP HFCs. For example, a 30% improvement in efficiency of room 
air conditioners avoids an additional 100 billion tonnes of CO2-eq emissions by mid-century.538 
Furthermore, a quicker transition away from HFCs will have an added benefit of preventing the 
accumulation of HFCs in products and equipment that risks release of HFCs in the future when 
the products and equipment are disposed.539 
 
 
SLCPs managed through the Convention on Long-Range Transboundary Air Pollution 
The Convention on Long-Range Transboundary Air Pollution (LRTAP) was signed in 1979 to 
combat air pollution, including that which crosses international boundaries. In 1999, the Parties 
to the Convention agreed to the Gothenburg Protocol, which entered into force in 2005. The 
Gothenburg Protocol was amended in 2012 to include binding requirements to reduce fine 
particulate matter, specifically including black carbon in part because of the co-benefits of 
protecting human health and the climate—especially in the Arctic.540 
 
 
Climate and Clean Air Coalition (CCAC) 
The Climate and Clean Air Coalition (CCAC) specialises in the reductions of SLCPs, and as of 
June 2018 has over 120 state and non-state partners, including governments, intergovernmental 
organizations, and businesses.541 The CCAC has sector specific initiatives—dealing with diesel, 
oil and gas, waste, brick production, HFCs, household energy, and agriculture—as well as cross-
sectoral initiatives—supporting national action on SLCPs, financing projects, performing 
assessments, and reducing air pollution. 542  The CCAC has four key strategies: enabling 
transformative action, mobilising support, increasing availability of financial resources, and 
enhancing scientific knowledge. 543  To accomplish the CCAC’s goals, they work through 
training, supporting development of laws and regulations, demonstrating technology, political 
outreach, raising awareness, co-finding and catalysing funding, and developing knowledge 
resources and tools.544 The status of these projects as well as goals for future projects are 
contained in annual reports545 as well as routine progress reports on individual initiatives.546 
 
In September 2015, the CCAC issued the Five-Year Strategic Plan (2020) to build upon the 
success already achieved by the CCAC and focus on policies and practices to reduce SLCPs in 
the near- to medium-term.547 Within the plan are four key strategies: (1) catalyse ambitious 
action, (2) mobilise robust support, (3) leverage finance at scale, and (4) enhance science and 
knowledge.548 At the 9th High Level Assembly in November 2017, the CCAC commended the 
successes of the first five years and outlined a focus to reduce methane and black carbon 
emissions from agriculture and municipal solid waste sources for the coming year.549 
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International Maritime Organization (IMO) 
The International Maritime Organization was established under the Convention on the 
International Maritime Organization in 1948 in Geneva, which entered into force in 1958.550 
Article 1 of the Convention establishes that the IMO is to create a vehicle for cooperation 
amongst countries for regulations and practices affecting shipping for international trade, 
including utilizing the best practicable standards for safety and controlling marine pollution.551 
 
In one of its first major accomplishments, the IMO adopted the International Convention on the 
Safety of Life at Sea (SOLAS) in 1960.552 An oil spill in 1967 prompted the IMO to work toward 
minimizing consequences, and this led to the International Convention for the Prevention of 
Pollution from Ships, 1973, which was modified by the Protocol in 1978; this is now known as 
MARPOL 73/78.553 
 
In 1997, Annex VI was added to the treaty, but it did not enter into force until May 2005.554 
Annex VI covers air pollution, but as of yet, there are only standards set for sulphur oxide, 
nitrogen oxide, and particulate matter emissions; ozone-depleting emissions are also prohibited 
under Annex VI.555 The IMO created emission control areas (ECAs) that are specific areas where 
these emissions are prohibited. Regulation 13 of MARPOL Annex VI applies NOX emission 
controls to the following areas: Pacific coasts of the United States and Canada; the Atlantic 
coasts of the United States, Canada, and France; the Hawaiian Islands; and the seas of the 
Caribbean.556 Regulation 14 set out the ECAs for SOX and particulate matter emissions; these 
include the areas covered under Regulation 13 as well as Baltic Sea and the North Sea.557 
 
Shipping in the Arctic contributes 1 to 3 per cent of global shipping emissions.558 Overall, 
shipping is responsible for approximately 5% of black carbon emissions in the Arctic, but studies 
suggest that this could double by 2030 and quadruple by 2050.559 Of the total emissions from 
shipping, CO2 has the largest climate impact, and black carbon has the second largest climate 
impact.560 CO2 emissions from shipping were 2.6% of the global energy-related CO2 emissions, 
which is up from 2.2% in 2012.561 The IMO projects that shipping emissions could grow up to 
250% by 2050.562 Using a 20-year time scale, black carbon is equivalent to 21% of the GHG 
emissions from the shipping sector.563 
 
The Arctic is nearly five times more sensitive to black carbon emitted in the Arctic region than 
from those emissions that originate in the mid-latitudes,564 making emissions from shipping 
within the Arctic region critical targets for black carbon mitigation.565 Over 2000 ships passed 
through the Arctic in 2015, from which 193 tonnes of black carbon were emitted; 68% of this 
black carbon came from burning heavy-fuel oil, even though only 42% of ships used heavy-fuel 
oil.566 Broken down by country, the top three emitters of black carbon were Russia, Canada, and 
Denmark, which emitted 74, 8, and 7 tonnes of black carbon, respectively.567 
 
There has been speculation that increased shipping will lead to increased sulphate emissions 
could lessen the warming in the Arctic more than the increase in warming from black carbon 
emissions.568 Shipping within the Arctic could reduce Arctic warming by 1 ºC by the end of the 
century because sulphate-driven cloud formation cools the lower atmosphere and surface.569 
Clouds can have both a warming and cooling effect on the atmosphere, but clouds forming in the 
Arctic as a result of sulphate emissions are comprised of smaller droplets that scatter more 
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incoming radiation and thus have a cooling effect, which is in addition to the general reflectivity 
and cooling of sulphates in the atmosphere.570 However, cooling from increased shipping is 
much smaller than the anticipated Arctic warming that would allow such ice-free conditions.571 
Additionally, policies that are already in place or will be put into place to reduce sulphate 
emissions will lessen this aerosol cooling effect from shipping.572 
 
In 2014, the IMO created the International Code for Ships Operating in Polar Waters, known as 
the Polar Code; the Polar Code entered into force on 1 January 2017.573 The Polar Code achieves 
similar goals of other IMO-associated conventions like MARPOL but with a focus on shipping 
in Polar Regions.574 Most of the Polar Code deals with overall safety requirements for ships 
operating in the Polar Regions, and the remainder of the Polar Code relates to pollution in the 
form of effluent emissions, sewage discharge, and garbage from ships.575 
 
The IMO approved Regulation 43 under MARPOL, which prevents ships in the Antarctic from 
using or transporting heavy fuel oil,576 and the Polar Code recommends—but does not require—
that ships operating in the Arctic do the same.577 At the February 2019 meeting of the Sub-
Committee on Pollution Prevention and Response, a call was made for an assessment of the 
impacts of banning heavy fuel oil use within the Arctic, the results of which will be shared at the 
next meeting and include guidelines on appropriate measures to ban the fuel and requisite 
infrastructure necessary to ensure economical implementation.578 
 
At the IMO’s April 2018 meeting, the Marine Environment Protection Committee (MEPC) of 
the IMO agreed to an initial strategy579 to address climate change whereby emissions from 
shipping should peak as soon as possible and total greenhouse gas emissions should be reduced 
by at least 50% by 2050 compared to 2008 levels.580 The IMO has previously instituted rules on 
improving energy efficiency in shipping through better engines and equipment,581 and some 
countries have proposed strengthening the 2011 IMO regulations on energy-efficiency, requiring 
the use of cleaner fuels and newer engines, or purchasing carbon-offset credits.582 The IMO 
currently has regulations in place to minimize emissions of sulphur oxides (SOX) and nitrogen 
oxides (NOX), which could be expanded to include other air and climate pollutants like black 
carbon. 583  The Sub-Committee on Pollution Prevention and Response identified potential 
measures to reduce black carbon emissions in the Arctic, forwarding them to the Marine 
Environment Protection Committee for discussion during their May 2019 meeting.584 
 
Individual shipping companies can also contribute to efforts. In December 2018, Maersk, the 
world’s largest shipping company, announced its intentions to cut net carbon emissions to zero 
by 2050, which is the most ambitious goal of the shipping industry and a move that will require 
carbon-free ships by 2030.585 
 
 
International Civil Aviation Organization (ICAO) 
The International Civil Aviation Organization (ICAO) is a specialized agency of the UN that 
manages implementation of the Convention on International Civil Aviation, also known as the 
Chicago Convention,586 and the ICAO came into existence when the Chicago Convention 
entered into force on 4 April 1947.587 The ICAO is comprised of the Assembly of representations 
from all member States; the Council of 36 States elected by the Assembly and holding the 
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position for three years; and the Secretariat.588 The ICAO works alongside other international 
organizations, including the World Meteorological Organization, the World Health Organization, 
and the International Maritime Organization; 589 the ICAO also works with assorted non-
governmental organizations.590 
 
The ICAO produces annual reports that are available online and dissected into individual topic 
areas and discussions.591 Within the ICAO, the Committee on Aviation Environmental Protection 
(CAEP) addresses environmental concerns, assisting the Council in developing standards and 
practices related to noise and emissions.592 In October 2016, the ICAO approved Resolution 22/2 
that included a plan for members of the ICAO to take steps to reduce CO2 emissions in aviation 
as part of its Global Market-Based Measure scheme.593 In September 2017, the ICAO developed 
draft rules relating to CO2 emissions, and two months later, the CAEP presented proposal for a 
fourth volume of the Environmental Technical Manual and other implementation guidance.594 
By the end of 2017, 72 States had volunteered to participate in the Carbon Offsetting and 
Reduction Scheme for International Aviation (CORSIA) initiative.595 
 
 
Arctic Council 
The Arctic Council was established under the Ottawa Declaration as a proclamation of Canada, 
Denmark, Finland, Iceland, Norway, Russia, Sweden, and the United States to work together to 
safeguard the Arctic and promote sustainable development within it.596 These countries all 
border the Arctic and have a vested interest in cooperating within the region. There are also 
observer states597 and organizations598 that can contribute to the work of the Arctic Council, 
primarily through contributions to Working Groups.599 
 
In the over two decades since its inception, the Arctic Council has developed Working Groups 
that provide a forum for discussions and negotiations pertaining to the Arctic.600 While the Arctic 
Council can develop recommendations and guidelines, the lack of an enforcement entity forces 
each Arctic state to be individually responsible.601 
 
Through the Arctic Council, the Arctic States and some Observer States “developed and 
submitted inventories of black carbon and methane emissions”.602 Both shipping and flaring 
from oil and gas industries are projected to increase in the Arctic, contributing to emissions of 
SLCPs.603 With declining sea ice, more trade routes through the Arctic are projected to open, and 
global shipping is likely to increase, resulting in a doubling of emissions.604 
 
The Arctic Council noted that emissions from shipping could be reduced through international 
action under the International Maritime Organization (IMO); an agreement under the IMO limits 
sulphur oxide and nitrogen oxide emissions while also engaging in policies aimed at 
implementing abatement technologies.605 As a result of these actions, black carbon emissions are 
projected to decrease by 24% from 2013 levels by 2025.606  
 
The Arctic Contaminants Action Program (ACAP) is one of the permanent Working Group of 
the Arctic Council and serves to encourage countries to reduce emissions and pollutants.607 The 
ACAP is one of the four expert groups of the Arctic Council that specializes in SLCPs.608 
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National and subnational laws regarding SLCP mitigation 
An international agreement tailored specifically to SLCPs has not been engineered. However, 
some countries and even collectives of countries have begun taking steps to establish laws and 
regulations that will mitigate SLCPs. 
 
On 17 July 2017, the European Union accepted an amendment to the Gothenburg Protocol (a 
protocol to the Convention on Long-range Transboundary Air Pollution, discussed below) that 
included particulate matter, noting that the E.U. had already implemented various Directives and 
Regulations that would be required under the Gothenburg Protocol.609 For example, Directive 
2016/2284 requires ozone and particulate matter, among other air pollutants, to be regulated by 
E.U. Members and notes that countries should prioritise black carbon emissions as part of their 
initiatives to reduce particulate matter.610 
 
Policies in Sweden and The Netherlands represent examples of actions that have been taken by 
E.U. members. Sweden places both an energy tax and a carbon dioxide tax on diesel fuel, and 
both taxes will increase by 2% each year starting in 2017.611 The Netherlands has reduced 
emissions of black carbon by introducing E.U. emission standards, including diesel particulate 
filters. 612  The Netherlands has also reduced emissions of methane through better waste 
management practices and improvements within the oil, gas, and aluminium industries.613 
Further, The Netherlands established The Netherlands Polar Programme as part of the overall 
Dutch Polar Strategy 2016–2020. The purpose of this program is to focus on the priority issues 
of ice, climate and sea-level rise, and others.614 
 
While the U.S. as a whole has not addressed SLCPs through federal legislation, California has 
enacted two laws relating to SLCPs. In 2006, California passed AB32, requiring California to 
reduce greenhouse gas emissions—including methane and HFCs—to 1990 levels by 2020, which 
is about 15% below what was expected under business-as-usual practices.615 In 2016, California 
passed a bill specific to SLCPs that would require the California Air Resources Board (CARB) 
to monitor and regulate emissions such that there is a reduction in methane by 40%, HFCs by 
40%, and black carbon by 50% below 2013 levels by 2030,616 and in September 2018, California 
passed legislation that would phasedown HFCs.617 
 
The Under2 Coalition began in May 2015 with 12 founding members and has since grown to 
include over 200 nations, states, regions, provinces, and cities.618 The overall goal of the 
members is to limit their greenhouse gas emissions by 80–95% below 1990 levels by 2050.619 
 
 
U.S. Climate Alliance 
The U.S. Climate Alliance is a bipartisan coalition that focuses on states taking the lead on 
climate change, noting that state-level action benefits state economies all while demonstrating 
the achievability of aggressive climate action.620 Participants with the U.S. Climate Alliance 
commit themselves to implementing policies in line with the goals of the Paris Agreement to 
reduce GHG emissions by at least 26–28 per cent below 2005 levels by 2025, which includes 
tracking and reporting progress as well as accelerating new and existing policies on clean 
energy.621 
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In June 2018, the U.S. Climate Alliance announced a commitment to reducing SLCPs because of 
the near-term climate benefits and the co-benefits to health, agriculture, and ecosystems.622 With 
this pledge, the U.S. Climate Alliance seeks to encourage national and subnational jurisdictions 
and businesses to commit to reducing SLCPs through improvements to emissions inventories, 
identification of methane leaks, promotion of energy efficiency (including refrigeration and 
cooling), phasedown of HFCs, and improvements in agricultural management and waste.623 
 
 
Intersection of SLCP mitigation with Sustainable Development Goals (SDGs) 
Many measures to reduce SLCPs will help countries address the Sustainable Development Goals 
(SDGs)624 and their targets with minimal trade-offs and conflicts; this is in addition to co-
benefits of SLCP and CO2 mitigation.625 
 
Methane measures involve degasification and recover of coal mines, recovery and utilization of 
fugitive emissions in oil and gas production, reducing leakage in natural gas transmission, 
addressing methane from municipal waste and landfills, better treatment of wastewater, 
promoting anaerobic digestion in livestock, and intermittent aeration for rice paddies.626 The 
associated SDGs include food security and hunger (Goal 2), promoting health through reducing 
air pollution (Goal 3), strengthening energy reliability (Goal 7) while promoting economic 
growth (Goal 8) through better infrastructure (Goal 9), and resulting in more sustainable 
production and consumption (Goal 12); all of this is in addition to climate protection (Goal 
13).627 
 
Black carbon measures include improving standards and particulate filters for diesel vehicles, 
eliminating high-emitting diesel vehicles, replacing traditional cookstoves with clean-burning 
stoves, replacing brick kilns with more efficient technologies, banning open burning of 
agricultural waste, replacing kerosene wick lamps with clean lighting, eliminating gas flaring, 
promoting walking and biking as means of travel, and encouraging healthy diets with less 
meat.628 The SDGs met through these measures include health (Goal 3), hunger (Goal 2), poverty 
(Goal 1), sustainable cities and communities (Goal 11), education (Goal 4), gender equality 
(Goal 5), energy (Goal 7), infrastructure (Goal 9), economic growth (Goal 8), and overall climate 
benefits (Goal 13).629 
 
For measures related to HFCs, the combination of replacing high-GWP HFCs with low-impact 
alternatives alongside a transition to super-efficient appliances will address the SDGs to reduce 
poverty (Goal 1), provide energy (Goal 7), economic development (Goal 8), sustainable cities 
and communities (Goal 11), and sustainable production and consumption (Goal 12).630 
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CONCLUSION 
 
Recent changes in the Arctic are harbingers of what is to the come to the region, and climate-
warming impacts in Antarctica are increasingly causing concerns amongst scientists of 
committed significant sea level rise. As temperatures continue to rise, the Polar Regions are 
facing an increasingly dire situation. Staving off the most devastating effects demands swift 
action to reduce the rate of warming and to secure long-term climate stability.  
 
The Arctic is warming twice as fast as the rest of the world, a trend that will continue as global 
temperatures rise. Repercussions of this amplified warming are already being witnessed through 
decreasing Arctic sea ice extent and accelerated melting of the Greenland ice sheet and could 
soon thaw permafrost that would unleash an immense feedback on the climate system. 
 
We must act with upmost speed to stay under 2 ºC, and even more so to achieve 1.5 ºC, because 
some tipping points and feedbacks are instigated prior to 2 ºC and other impacts of climate 
change are exacerbated as temperatures warm from 1.5 ºC to 2 ºC. Slowing warming globally 
and in the Arctic is essential to avoid a cascade of feedbacks that would push the global climate 
into a new and unknown climate regime. 
 
Existing laws and regulations can serve as guides for others looking to develop and expand their 
own initiatives to reduce emissions of greenhouse gases. Successful initiatives can inspire other 
countries to take similar steps. For institutions that have yet to achieve success at the necessary 
level to maintain a stable climate, existing pieces of legislation can provide models for action, 
making it easier to embrace the challenges and achieve success. 
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Appendix I: List of acronyms and abbreviations 
 

ºC  degrees Celsius  
ACAP  Arctic Contaminants Action Program 
AMAP  Arctic Monitoring & Assessment Programme 
A5 Parties developing countries qualified for grace periods and MFL financing under the Montreal Protocol 
AR5  Fifth Assessment Report of the IPCC 
BAU  business-as-usual 
BC  black carbon 
C  carbon 
CARB  California Air Resources Board 
CFC  chlorofluorocarbon 
CH4    methane 
CO2    carbon dioxide 
CO2-eq  carbon dioxide equivalent 
EAIS  East Antarctic Ice Sheet 
ENSO  El Niño-Southern Oscillation 
E.U.   European Union 
GHG  greenhouse gas 
GrIS  Greenland Ice Sheet 
Gt  gigatonne (billion tonnes) 
GWP   global warming potential 
HCFCs  hydrochlorofluorocarbon 
HFCs  hydrofluorocarbon 
HFOs  hydrofluoroolefins 
HFO  heavy fuel oil 
ICAO  International Civil Aviation Organization 
IEA  International Energy Agency 
IGSD  Institute for Governance & Sustainable Development 
IMO  International Maritime Organization 
IPCC  Intergovernmental Panel on Climate Change 
MEPC  Marine Environment Protection Committee 
NASA  National Aeronautics & Space Administration 
NASA GISS National Aeronautics & Space Administration Goddard Institute for Space Studies 
NGO  non-governmental organization 
NOAA  National Oceanic & Atmospheric Administration 
Non-A5 Parties developed countries to the Montreal Protocol 
NOX  nitrogen oxides 
NSIDC  National Snow & Ice Data Center 
ODS  ozone-depleting substance 
PETM  Palaeocene-Eocene Thermal Maximum 
Pg  petagram (equal to billion tonnes) 
RCP  Representative Concentration Pathway 
SDG  Sustainable Development Goal 
SLCP  short-lived climate pollutant 
SLR  sea-level rise 
SOX  sulphur oxides 
U.K.  United Kingdom 
UN  United Nations 
UNEP  United Nations Environment Programme 
UNFCCC United Nations Framework Convention on Climate Change 
U.S.  United States 
U.S. EPA United States Environmental Protection Agency 
WAIS  West Antarctic Ice Sheet 
WHO  World Health Organization 
WMO  World Meteorological Organization  
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1 Arctic Monitoring and Assessment Programme (AMAP) (2017) SNOW, WATER, ICE, AND PERMAFROST IN THE 
ARCTIC: SUMMARY FOR POLICYMAKERS, 8 (“The Arctic is still a cold place, but it is warming faster than any other 
region on Earth. Over the past 50 years, the Arctic’s temperature has risen by more than twice the global average. 
Increasing concentrations of greenhouse gases in the atmosphere are the primary underlying cause: the heat trapped 
by greenhouse gases triggers a cascade of feedbacks that collectively amplify Arctic warming.”). 
2 A tipping element is a component of the Earth climate system that is sufficiently large in scale and capable of 
existing in two or more qualitatively different states. These states can be altered by some small perturbation—the 
tipping point—that ialters the future of the tipping element. The transition to the future state can occur quickly or 
take many decades, centuries, or even millennia to appear. See Lenton T., et al. (2008) Tipping elements in the 
Earth’s climate system, PROC. NAT’L. ACAD. SCI. 105(6):1786–1793, 1786 (“In discussions of global change, the 
term tipping point has been used to describe a variety of phenomena, including the appearance of a positive 
feedback, reversible phase transitions, phase transitions with hysteresis effects, and bifurcations where the transition 
is smooth but the future path of the system depends on the noise at a critical point. We offer a formal definition, 
introducing the term ‘‘tipping element’’ to describe subsystems of the Earth system that are at least subcontinental in 
scale and can be switched—under certain circumstances— into a qualitatively different state by small perturbations. 
The tipping point is the corresponding critical point—in forcing and a feature of the system—at which the future 
state of the system is qualitatively altered.”); Lenton T. (2011) Early warning of climate tipping points, NATURE 
CLIMATE CHANGE 1:201–209, 202 (“The phrase ‘tipping point’ captures the colloquial notion that ‘little things can 
make a big difference’, that is, at a particular moment in time, a small change can have large, long-term 
consequences for a system. The term ‘tipping element’ was introduced to describe large-scale subsystems (or 
components) of the Earth system that can be switched — under certain circumstances — into a qualitatively 
different state by small perturbations. These must be at least sub-continental in scale (length scale of order ~1,000 
km). The tipping point is the corresponding critical point — in forcing and a feature of the system — at which the 
future state of the system is qualitatively altered. …In this definition, the critical threshold (ρcrit) is the tipping point, 
beyond which a qualitative change occurs, and the change may occur immediately after the cause or much later.”); 
and Kopp R. E., et al. (2016) Tipping elements and climate–economic shocks: Pathways toward integrated 
assessment, EARTH’S FUTURE 4:346–372, 347 (“Lenton et al. [2008] formalized the concept of “tipping points” in 
the climate system in a way that loosened this definition. Lenton et al. [2008] defined a “tipping element” as a 
subsystem of the Earth system, subcontinental or larger, that small perturbations can shift into multiple different 
stable states. A tipping element’s tipping point is a critical threshold at which “a small change in forcing triggers a 
strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future 
state” [Lenton, 2011, p. 201]. Lenton [2013] noted that the triggering forcing might arise as a result of the level of 
forcing, the rate of forcing, or system noise.”). 
3 Steffen W., et al. (2018) Trajectories of the Earth System in the Anthropocene, PROC. NAT’L. ACAD. SCI. 
115(33):8252–8259, 8254 (“This risk is represented in Figs. 1 and 2 by a planetary threshold (horizontal broken line 
in Fig. 1 on the Hothouse Earth pathway around 2 °C above preindustrial temperature). Beyond this threshold, 
intrinsic biogeophysical feedbacks in the Earth System (Biogeophysical Feedbacks) could become the dominant 
processes controlling the system’s trajectory. Precisely where a potential planetary threshold might be is uncertain 
(15, 16). We suggest 2 °C because of the risk that a 2 °C warming could activate important tipping elements (12, 
17), raising the temperature further to activate other tipping elements in a domino-like cascade that could take the 
Earth System to even higher temperatures (Tipping Cascades). Such cascades comprise, in essence, the dynamical 
process that leads to thresholds in complex systems (section 4.2 in ref. 18).”). 
4 Steffen W., et al. (2018) Trajectories of the Earth System in the Anthropocene, PROC. NAT’L. ACAD. SCI. 
115(33):8252–8259, 8255, Figure 3. 
5 Norris J. R., et al. (2016) Evidence for climate change in the satellite cloud record, NATURE 536:72–75, 72 (“Here 
we show that several independent, empirically corrected satellite records exhibit large-scale patterns of cloud change 
between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent 
historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward 
retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud 
tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas 
concentrations and a recovery from volcanic radiative cooling. These results indicate that the cloud changes most 
consistently predicted by global climate models are currently occurring in nature.”); see also Bender F. A.-M., et al. 
(2012) Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift, 
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CLIMATE DYNAMICS 38(9–10):2037–2053, 2037 (“Climate model simulations suggest that the extratropical storm 
tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere 
storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the 
International Satellite Cloud Climatology Project, ISCCP. … It is found that the storm tracks, here represented by 
the extent of the mid-latitude-centered band of maximum cloud cover over the studied ocean basins, experience a 
poleward shift as well as a narrowing over the 25 year period covered by ISCCP. … The observed changes in storm 
track cloudiness can be related to local cloud-induced changes in radiative forcing, using ERBE and CERES 
radiative fluxes. The shortwave and the longwave components are found to act together, leading to a positive 
(warming) net radiative effect in response to the cloud changes in the storm track regions, indicative of positive 
cloud feedback. Among the CMIP3 models that simulate poleward shifts in all four storm track areas, all but one 
show decreasing cloud amount on a global mean scale in response to increased CO2 forcing, further consistent with 
positive cloud feedback. Models with low equilibrium climate sensitivity to a lesser extent than higher-sensitivity 
models simulate a poleward shift of the storm tracks.”); and Committee to Prevent Extreme Climate Change (2017) 
Well Under 2 Degrees Celsius: Fast Action Policies to Protect People and the Planet from Extreme Climate 
Change, 9 (“Though clouds enhance the greenhouse effect by trapping heat, they also reflect an enormous amount of 
solar radiation and nearly double the albedo of the planet. Their albedo effect dominates over their greenhouse 
effect, balancing out to a net cooling of about –25 Wm–2 (compared with the 1.6 Wm–2 forcing from CO2 and total 
current forcing of 3 Wm–2) (IPCC, 2013). More than two-thirds of this cooling is from the extensive extratropical 
cloud systems, which are found poleward of about 40° and are associated with jet streams and storm tracks (IPCC, 
2013). Satellite data reveal that these cloud systems are retreating poleward in both hemispheres, which has led to an 
increase in the solar radiation reaching the extratropics, further amplifying warming (Bender et al., 2012; Norris et 
al., 2016). Thus, the Arctic warming is amplified by two large feedbacks: first is the decrease in albedo from the 
retreating sea ice, which is then further amplified by the decrease in albedo from the shrinking storm track clouds.”). 
6 National Snow & Ice Data Center (NSIDC), All about the Cryosphere (last accessed 4 May 2018) (“Some places 
on Earth are so cold that water is a solid—ice or snow. Scientists call these frozen places of our planet the 
‘cryosphere.’ The word ‘cryosphere’ comes from the Greek word for cold, ‘kryos.’ The cold regions of our planet 
influence our entire world's climate. Plus, the cryosphere is central to the daily lives of the people, plants, and 
animals that have made it their home. When scientists talk about the cryosphere, they mean the places where water 
is in its solid form, where low temperatures freeze water and turn it into ice. People most often think of the 
cryosphere as being at the top and bottom of our planet, in the polar regions. We call the area around the North Pole 
the Arctic and the area around the South Pole the Antarctic. But snow and ice are also found at many other locations 
on Earth.”). 
7 National Snow & Ice Data Center (NSIDC), All about the Cryosphere (last accessed 4 May 2018) (“The North 
Pole is covered by a cold ocean called the Arctic Ocean. In the Arctic Ocean, sea ice grows in the winter and shrinks 
in the summer. Frozen ground and permafrost ring the Arctic Ocean. Glaciers, snow, and ice cover the nearby land, 
including a thick sheet of snow and ice covering Greenland.”). 
8 National Snow & Ice Data Center (NSIDC), All about the Cryosphere (last accessed 4 May 2018) (“Antarctica, at 
Earth's South Pole, is an icy continent. A huge ice sheet covers the land mass of Antarctica and, in some places, 
shelves of floating ice extend into the ocean. The outer sections of ice break off or "calve" from these shelves and 
form icebergs. The icebergs float in the oceans, melting and falling apart as they drift into warmer waters.”). 
9 Arctic Monitoring and Assessment Programme (AMAP) (2017) SNOW, WATER, ICE, AND PERMAFROST IN THE 
ARCTIC: SUMMARY FOR POLICYMAKERS, 8 (“Since 2011, evidence for the Arctic’s evolution toward a new state has 
grown stronger. Additional years of data show continued or accelerating trends in record warm temperatures, 
changes in sea ice and snow, melting of glaciers and ice sheets, freshening and warming of the Arctic Ocean, 
thawing of permafrost, and widespread ecological changes.”). 
10 The term “short-lived climate pollutants” (SLCPs)—or short-lived super pollutants—will be used through this 
Primer, but note that some publications use the term “short-term climate forcers” (SLCFs). SLCPs are so named 
because of their short atmospheric lifetimes: days to weeks for black carbon, a little over a decade for methane, and 
roughly fifteen years for some HFCs. Removing SLCPs leads to relatively immediate benefits that, when coupled 
with CO2 mitigation, can have lasting impacts on the climate. See Shoemaker J. K., et al. (2013) What Role for 
Short-Lived Climate Pollutants in Mitigation Policy?, SCIENCE 342:1323–1324, 1323–1324 (“Direct comparisons of 
the climate influence of SLCPs and CO2 require making a judgment about the relative importance of short and long 
time scales. SLCPs have a powerful impact on climate, but they persist in the atmosphere for only a short time—
days to weeks for BC, a decade for CH4, and about 15 years for some HFCs. Thus, immediate reductions in SLCPs 
will result in relatively immediate climate benefits, as the effects on climate depend largely on the emission rate, or 
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flow, of SLCPs to the atmosphere. …It is also important to recognize that CO2 and SLCP emissions are not 
independent. Some of the steps to reduce CO2 emissions will drive down emissions of SLCPs, as some of the largest 
sources of BC and methane are associated with fossil fuel production and combustion.”). 
11 Lenton T. M. (2012) Arctic Climate Tipping Points, AMBIO, 41:10–22, 19 (“This mixture of forcing agents opens 
up avenues for mitigation policy (Lenton 2011a; Lenton 2011b). CO2 is an extremely long-lived gas, so we can only 
change its concentration gradually by limiting our CO2 emissions, and we must act globally. Methane has a shorter 
lifetime of around a decade, offering a more rapid response of its concentration to reducing emissions. Tropospheric 
ozone and black carbon have much shorter lifetimes still, such that a reduction in production translates almost 
instantaneously into a reduction in radiative forcing. Furthermore, particular regions of the world make a 
disproportionate contribution to Arctic radiative forcing from these agents. Consequently, efforts to restrict black 
carbon emissions through e.g. national air pollution policies and appropriate technologies, in e.g. China and India, 
could be a quick way to start limiting Arctic radiative forcing. The incentives (financial or otherwise) needed to help 
such countries protect the Arctic in this way, merit consideration. Of course CO2 must also be globally tackled, and 
we should start reducing CO2 emissions now to reduce the risk of more distant Arctic tipping points.”); see also 
Duarte C. M., et al. (2012) Abrupt climate change in the Arctic, NATURE CLIMATE CHANGE 2:60–62, 62 (“Methane 
and the tropospheric ozone produced from it are also significant contributors to Arctic warming. Encouragingly, 
around 40% of global anthropogenic methane emissions could be mitigated at zero cost or with net economic benefit 
(the stumbling block being that the benefits are shared by everyone, whereas the mitigation costs are borne by only a 
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the Montreal Protocol; see also Molina M., et al. (2009) Reducing abrupt climate change risk using the Montreal 
Protocol and other regulatory actions to complement cuts in CO2 emissions, PROC. NAT’L. ACAD. SCI. 
106(49):20616–20621, 20616 (“We define ‘‘fast-action’’ to include regulatory measures that can begin within 2–3 
years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss 
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88(5):105–113, 113 (“At the current rate of global warming the earth’s temperature stands to careen out of control.  
Now is the time to look carefully at all the possible brakes that can be applied to slow climate change, hedge against 
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yields a rate of 0.05ºC per decade whereas the longer timescale of 1951 to 2012 results in a warming of 0.12 ºC per 
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Arctic Ocean showed a continued decline from 2014 through 2017. The April 2017 sea-ice volume of 13.19 ± 1.15 
thousand cubic kilometers ranks as the third lowest spring volume after April 2012 (13.14 ±1.27) and 2013 (12.56 ± 
1.21) in the AWI CryoSat-2 data record. The difference between the three lowest volume estimates lies within the 
observational uncertainties.”); see also News Release, National Oceanic and Atmospheric Administration (NOAA), 
Arctic saw 2nd warmest year, smallest winter sea ice coverage on record in 2017 (12 December 2017) (“Declining 
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records of Arctic sea-ice thickness are far less robust than those of its areal extent, they show unambiguously that 
Arctic sea-ice volume has declined dramatically over the past two decades. Most of the sea-ice area present in the 
spring now represents first-year ice, prone to melting during summer.”). 
133 Stroeve J. & Notz D. (2018) Changing state of Arctic sea ice across all seasons, ENVTL. RESEARCH LETTERS 
13(103001):1–23, 13 (“Bathiany et al (2016) explain this behavior by a simple geometric argument: The loss of 
summer sea ice proceeds comparably slowly, because the ice thickness distribution is rather broad and in a given 
summer, the thinnest ice disappears while thicker ice might stay behind. For the loss of winter sea ice, however, the 
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for 1.5degOS.”); see also Jahn A. (2018) Reduced probability of ice-free summers for 1.5 °C compared to 2 °C 
warming, NATURE CLIMATE CHANGE 8:409–413, 409 (“Arctic sea ice has declined rapidly with increasing global 
temperatures. However, it is largely unknown how Arctic summer sea-ice impacts would vary under the 1.5 °C Paris 
target compared to scenarios with greater warming. Using the Community Earth System Model, I show that 
constraining warming to 1.5 °C rather than 2.0 °C reduces the probability of any summer ice-free conditions by 
2100 from 100% to 30%. It also reduces the late-century probability of an ice cover below the 2012 record 
minimum from 98% to 55%. For warming above 2 °C, frequent ice-free conditions can be expected, potentially for 
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these results provide a lower bound on summer sea-ice impacts, but clearly demonstrate the benefits of constraining 
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with an Earth System Model to obtain sea-ice projections under stabilized global warming, and correct biases in 
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143 Sanderson B. M., et al. (2017) Community climate simulations to assess avoided impacts in 1.5 and 2 ºC futures, 
EARTH SYSTEM DYNAMICS 8:827–847, 827 (“Exceedance of historical record temperature occurs with 60 % greater 
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equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 ºC climate 
than a 1.5 ºC climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which 
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is ice-free with a frequency of 1 in 3 years in the 2.0 ºC scenario, and 1 in 40 years in the 1.5 ºC scenario. 
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Williamson D. (2017) Ice-free Arctic at 1.5ºC?, NATURE CLIMATE CHANGE 7:230–231, 230 (“Using Bayesian 
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prevent an ice-free Arctic.”); and Jahn A. (2018) Reduced probability of ice-free summers for 1.5 °C compared to 2 
°C warming, NATURE CLIMATE CHANGE 8:409–413, 409 (“Using the Community Earth System Model, I show that 
constraining warming to 1.5 °C rather than 2.0 °C reduces the probability of any summer ice-free conditions by 
2100 from 100% to 30%. It also reduces the late-century probability of an ice cover below the 2012 record 
minimum from 98% to 55%. For warming above 2 °C, frequent ice-free conditions can be expected, potentially for 
several months per year.”). 
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145 Jahn A. (2018) Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming, NATURE 
CLIMATE CHANGE 8:409–413, 411 (“However, in the low-warming scenarios, it is likely to be an isolated event, 
whereas in the stronger-warming scenarios a second ice-free year would soon follow the first (Supplementary 
Section 1 and Supplementary Fig. 3d). The largest impact of scenario differences on the timing of the first possible 
occurrence of an ice-free Arctic in September is again found for limiting warming to 1.5°C rather than 2.0°C (Fig. 
3a). This means that limiting warming to 1.5 °C is likely to delay ice-free conditions in September, and could avoid 
them altogether.”). 
146 Sanderson B. M., et al. (2017) Community climate simulations to assess avoided impacts in 1.5 and 2 ºC futures, 
EARTH SYSTEM DYNAMICS 8:827–847, 828 (“For the lower Paris Agreement temperature goal of 1.5ºC, coherent 
efforts beginning in 2017 would require both emissions rate reductions of at least 5 % yr−1 (Sanderson et al., 2016) 
and likely substantial commitment to negative net carbon emission technologies in the second half of the century 
(Smith et al., 2016).”). 
147 Sigmond M., et al. (2018) Ice-free Arctic projections under the Paris Agreement, NATURE CLIMATE CHANGE 
8:404–408, 405 (“Despite delayed ocean warming after stabilization (not shown), the SSIE stabilizes as soon as the 
global mean temperature has stabilized. However, the accumulated ice-free probability (Fig. 2c) does not stabilize. 
Instead, it rapidly increases from 14% at the first crossing of the 1.5 °C threshold (indicated by the circle) to 98% 
about 25 years later, and reaches 100% two decades thereafter. In other words, even though only a small fraction of 
ensemble members reach ice-free conditions at the time of the first crossing of the 1.5 °C global warming threshold, 
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ensemble the accumulated ice-free probability reaches 100% less than a decade after the temperature threshold is 
first exceeded. The accumulated ice-free probability continues to increase, even after the ensemble mean SSIE has 
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148 Jahn A., et al. (2016) How predictable is the timing of a summer ice-free Arctic?, GEOPHYSICAL RESEARCH 
LETTERS 43:9113–9120, 9113 (“Based on results from large ensemble simulations with the Community Earth 
System Model, we show that internal variability alone leads to a prediction uncertainty of about two decades, while 
scenario uncertainty between the strong (Representative Concentration Pathway (RCP) 8.5) and medium (RCP4.5) 
forcing scenarios adds at least another 5 years. Common metrics of the past and present mean sea ice state (such as 
ice extent, volume, and thickness) as well as global mean temperatures do not allow a reduction of the prediction 
uncertainty from internal variability.”). 
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with RCP4.5 and RCP6.0 making up the middle ground. van Vuuren D. P., et al. (2011) The representative 
concentration pathways: an overview, CLIMATIC CHANGE 109:5–31, 5 (“This paper summarizes the development 
process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways 
developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The 
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emissions of air pollutants and greenhouse gases are reported mostly at a 0.5 × 0.5 degree spatial resolution, with air 
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assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across 
models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. 
For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with 
extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 
2300. The RCPs are an important development in climate research and provide a potential foundation for further 
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150 Jahn A., et al. (2016) How predictable is the timing of a summer ice-free Arctic?, GEOPHYSICAL RESEARCH 
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threshold for the first time is 2032–2053 under the strong forcing scenario used in the CESM LE and 2043–2058 
under the medium forcing scenario used in the CESM ME (Figure 1c). This means that due to internal variability 
alone, the timing of an ice-free summer Arctic has a prediction uncertainty of up to 21 years.”). 
151 Jahn A. (2018) Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming, NATURE 
CLIMATE CHANGE 8:409–413, 410 (“The timing of the first possible occurrence of an ice-free Arctic in September is 
strongly impacted by internal variability. …This is due to an enhanced internal variability in the low-warming 
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members (Fig. 3b), even though the CESM ensemble mean temperature at which ice-free conditions occur for the 
first time is 1.9 °C.”). 
152 Jahn A. (2018) Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming, NATURE 
CLIMATE CHANGE 8:409–413, 409 (“Even when warming is limited to 1.5 °C, the Arctic summer sea-ice cover 
experiences significant reductions compared to today's cover. By the end of the twenty-first century, 55% of the 
September SIEs are below the record minimum to date (in 2012, Fig. 1a). However, if warming reaches 2.0 °C, 98% 
of September SIEs will be below the record 2012 minimum by the late twenty-first century (Fig. 1a). For an even 
larger warming, the late twenty-first century Arctic sea-ice cover will be in a completely different regime to that 
known so far, with September SIEs far below those observed over the past 38 years and a high probability of ice-
free conditions (Fig. 1a).”). 
153 Stroeve J. & Notz D. (2018) Changing state of Arctic sea ice across all seasons, ENVTL. RESEARCH LETTERS 
13(103001):1–23, 2 (“While complete loss of the summer sea-ice cover will have far-reaching implications beyond 
the Arctic, the observed reductions in sea-ice thickness and coverage are already impacting the energy balance of 
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mixed layer, warming ocean temperatures and delaying autumn freeze-up (Stroeve et al 2014a). Before the ice can 
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evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a 
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around 1.6 million km2 of sea ice loss per °C of annual mean global warming.”). 
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amplitude describes the meridional extent of the meanders in the flow, hereafter referred to as “meridional 
amplitude.” The isopleths used were 5400, 5500, 5700, and 5600 m for winter (January–February–March; JFM), 
spring (April–May–June; AMJ), summer (July–August–September; JAS), and autumn (October–November–
December; OND), respectively. These selected isopleths and seasonal definitions are consistent with FV12. We 
calculated the latitude of the selected Z500 isopleth (denoted θiso) at each longitude. Because the selected isopleth 
commonly lies between grid points, θiso was approximated by linear interpolation from the neighboring grid points. 
For longitudes where there were multiple instances of the selected isopleth, the most southerly intersection was 
chosen. In the second framework, we define the waves in terms of the Z500 around the 45 N latitude circle. In this 
framework, wave amplitude describes the height and depth of ridges and troughs around 45 N, hereafter referred to 
as “zonal amplitude.” In what follows we are careful to use the colloquial terms “ridge” and “trough” only in the 
context of zonal waves and “meander” only in the context of meridional waves. The two measures of amplitude 
reflect different characteristics of the mid-latitude circulation and changes therein, and have differing implications 
for mid-latitude weather, which will be discussed later.”). 
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171 Francis J. A. & Vavrus S. J. (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes, 
GEOPHYSICAL RESEARCH LETTERS 39(L06801):1–6, 1 (“Arctic amplification (AA) – the observed enhanced 
warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric 
temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for 
Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-
south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two 
effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 
1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and 
winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-
latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to 
be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged 
conditions, such as drought, flooding, cold spells, and heat waves.”); see also Francis J. A. & Vavrus S. J. (2015) 
Evidence for a wavier jet stream in response to rapid Arctic warming, ENVTL. RESEARCH LETTERS 10(014005):1–
12, 9 (“Here we provide evidence demonstrating that in areas and seasons in which poleward gradients have 
weakened in response to AA, the upper-level flow has become more meridional, or wavier. Moreover, the frequency 
of days with high-amplitude jet-stream configurations has increased during recent years. These high-amplitude 
patterns are known to produce persistent weather patterns that can lead to extreme weather events. Notable examples 
of these types of events include cold, snowy winters in Eastern North America during winters of 2009/10, 2010/11, 
and 2013/14; record-breaking snowfalls in Japan and SE Alaska during winter 2011/12; and Middle-East floods in 
winter 2012/2013, to name only a few.”); and Ahlstrøm A. P., et al. (2017) Abrupt shift in the observed runoff from 
the southwestern Greenland ice sheet, SCIENCE ADVANCES 3(e1701169):1–7, 4 (“Increased frequency in blocking 
events and meridional flow has been linked to a wavier jet stream because of a reduced poleward temperature 
gradient, in turn an effect of the Arctic amplification of global warming (39). Here, we present observational 
evidence of an abrupt change in the runoff regime in southwest Greenland occurring in 2003, with an 80% increase 
in ice sheet runoff between the 1976– 2002 and 2003–2014 periods, and link this to an increase in persistent 
summertime anticyclonic flow over Greenland through correlation with the GBI and a southward shift in the origin 
of the air masses arriving in the Tasersiaq catchment in southwest Greenland. We consider it likely that this change 
in the runoff regime driven by atmospheric changes could be further reinforced by the growth of ice layers in the 
firn of the lower accumulation area of the ice sheet, reducing meltwater retention (20).”). 
172 Francis J. A. & Vavrus S. J. (2015) Evidence for a wavier jet stream in response to rapid Arctic warming, 
ENVTL. RESEARCH LETTERS 10(014005):1–12, 8 (“Overall, the pattern of frequency change is consistent with 
expectations of a more amplified jet stream in response to rapid Arctic warming. Amplified jet-stream patterns are 
associated with a variety of extreme weather events (i.e., persistent heat, cold, wet, and dry), thus an increase in 
amplified patterns suggests that these types of extreme events will become more frequent in the future as AA 
continues to intensify in all seasons. These results may also provide a mechanism to explain observed associations 
between sea-ice loss and continental heat waves, cold spells, heavy snowfall, and anomalous summer precipitation 
patterns in Europe.”); see also  
173 Screen J. A. & Simmonds I. (2013) Exploring links between Arctic amplification and mid-latitude weather, 
GEOPHYSICAL RESEARCH LETTERS 40:959–964, 963 (“Figure 4c shows the meanders defined by a selected isopleth 
in Figure 4a and the same isopleth in Figure 4b. In response to AA the meanders shift poleward, but not equally at 
all longitudes. This reflects that the northward meanders are located in a region of larger Z500 increase than the 
southward meanders, and hence the former shift poleward more than the latter. Thus, meridional amplitude increases 
in the presence of AA. Figure 4d shows the waves defined by sampling Z500 along a line of latitude (dashed lines in 
Figures 4a and 4b). In this case, the wave shifts equally at all longitudes and zonal amplitude remains unchanged. 
Furthermore, it is possible for zonal amplitude to decrease at all latitudes and for meridional amplitude to still 
increase, if the influence of AA is greater than the influence of decreased zonal amplitude. We propose that this 
scenario explains the opposing trends in meridional and zonal amplitude in some seasons and sectors.”). See also 
Figure 4 from Screen and Simmonds 2013; and Hanna E., et al. (2016) Greenland Blocking Index 1851–2015: a 
regional climate change signal, INT’L. J. CLIMATOLOGY 36:4847–4861, 4860 (“The combination of these possible 
forcing effects through Arctic Amplification, which is traditionally thought to be greatest in winter due to a lagged 
response to summer sea-ice losses (Deser et al., 2010; Screen and Simmonds, 2010) and limited ice-/snow-melt 
during the cold season, may have recently led to more frequent destabilization of the winter jet and polar vortex. 
However, as this does not happen every year, this may have the effect of making the winter atmospheric circulation 
in mid-high northern latitudes more variable on an interannual basis. This perhaps reflects interplay between the 
tropical, Arctic and mid-latitude influences outlined above, together with internal atmospheric variability. Future 
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modelling and dynamical process studies should focus on defining the relative influences of the various climatic 
forcings and feedbacks discussed above on Greenland Blocking changes. However, whatever the causes of these 
recent changes, our GBI index effectively captures them and enables them to be placed in a longer-term climatic 
context.”). 
174 Cohen J., et al. (2018) Warm Arctic episodes linked with increased frequency of extreme winter weather in the 
United States, NATURE COMMUNICATIONS 9(869):1–12, 2 (“Anthropogenic global warming is widely expected to 
increase certain types of weather extremes, including more intense and frequent heat waves and droughts as well as 
heavy precipitation events. Surprisingly, however, over the past two to three decades, the increase in extreme 
weather has included more (not fewer) severe cold-air outbreaks and heavy snowfalls observed both in North 
America and Eurasia.”). 
175 Cohen J., et al. (2018) Warm Arctic episodes linked with increased frequency of extreme winter weather in the 
United States, NATURE COMMUNICATIONS 9(869):1–12, 2–3 (“A strong relationship between a warmer Arctic and 
increased frequency of severe winter weather is apparent for all stations east of the Rockies, with the strongest 
association in the eastern third of the US, where we find a statistically significant (p < 0.01) and nearly linear 
relationship between Arctic height changes throughout the troposphere and AWSSI. When Arctic heights are at their 
lowest (PCH < ~ −1), severe winter weather is unlikely.”); Cohen J., et al. (2018) Warm Arctic episodes linked with 
increased frequency of extreme winter weather in the United States, NATURE COMMUNICATIONS 9(869):1–12, 6 
(“Modeling studies have reported divergent conclusions as to whether AA contributes to less or more snowfall. We 
computed the return period of varying thresholds of snowfall across the US before (1950–1989) and after (1990–
2016) the emergence of AA (Fig. 9). Consistent with our earlier results that a warmer Arctic favors heavier 
snowfalls, we find that across the northeastern US, heavy snowfalls are generally more frequent since 1990, and in 
many cities the most extreme snowfalls have occurred primarily during recent decades. In contrast, severe snowfalls 
in the western US have in general decreased during the AA period. For most cities shown in Fig. 9, the snowfall 
return periods were found to differ between the two periods with a confidence level greater than 95%.”). 
176 Cohen J., et al. (2018) Warm Arctic episodes linked with increased frequency of extreme winter weather in the 
United States, NATURE COMMUNICATIONS 9(869):1–12, 5 (“To compare Arctic versus tropical influences on severe 
winter weather events, the analysis was repeated but with the PCH index replaced with the El Niño/Southern 
Oscillation (ENSO) index, as the tropics are generally thought to be the most important remote driver of mid-
latitude weather. In Supplementary Figure 1 we plot the composite AWSSI relative to the standardized Niño 3.4. For 
all stations across the country, there is no preferential value of AWSSI with ENSO variability, though there does 
seem to be a decline in severe winter weather for the most extreme El Niño values. This finding suggests that Arctic 
variability has a stronger influence on severe winter weather events than does ENSO variability.”). 
177 Cvijanovic I., et al. (2017) Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s 
rainfall, NATURE COMMUNICATIONS 8(1947):1–10, 1 (“From 2012 to 2016, California experienced one of the worst 
droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms 
were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify 
a new link between Arctic sea-ice loss and the North Pacific geopotential ridge development. In a two-step 
teleconnection, sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic 
response over the North Pacific, resulting in significant drying over California. These findings suggest that the 
ability of climate models to accurately estimate future precipitation changes over California is also linked to the 
fidelity with which future sea-ice changes are simulated. We conclude that sea-ice loss of the magnitude expected in 
the next decades could substantially impact California’s precipitation, thus highlighting another mechanism by 
which human-caused climate change could exacerbate future California droughts.”). 
178 Cvijanovic I., et al. (2017) Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s 
rainfall, NATURE COMMUNICATIONS 8(1947):1–10, 8 (“As a final remark, we note that the pronounced Arctic sea-
ice loss over the satellite era is likely human-induced, arising from anthropogenic warming caused by greenhouse 
gas increases. Our study thus identifies yet another pathway by which human activities could affect the occurrence 
of future droughts over California—through human-induced Arctic sea-ice decline.”). 
179 Cvijanovic I., et al. (2017) Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s 
rainfall, NATURE COMMUNICATIONS 8(1947):1–10, 6 (“As seen from Supplementary Fig. 8a, low Arctic sea-ice 
increases the likelihood of drier California, but does not result in drier conditions over California every single year. 
On average, when considering the 20-year mean, there is a 10–15% decrease in California’s rainfall (Fig. 2c). 
Comparison with the driest 3-year interval within this 20-year period (Supplementary Fig. 8b) indicates that the 
magnitude of the simulated precipitation response is comparable to the magnitude of changes in ERA-Interim during 
the most recent drought.”). 
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180 Cvijanovic I., et al. (2017) Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s 
rainfall, NATURE COMMUNICATIONS 8(1947):1–10, 6 (“This consistency does not, however, constitute compelling 
evidence that the 2012–2016 California drought is attributable to Arctic sea-ice changes. Rather, it illustrates that 
some of the atmospheric features of the droughts driven by Arctic sea-ice loss may resemble those of the most recent 
California drought.”). 
181 Cvijanovic I., et al. (2017) Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s 
rainfall, NATURE COMMUNICATIONS 8(1947):1–10, 8 (“We emphasize, however, that sea-ice loss is one of multiple 
factors implicated in driving the described atmospheric circulation and precipitation changes. In simulations of 
historical and future climate, multiple hemispherically asymmetric forcings are changing simultaneously. Some of 
these forcings affect sea-ice cover, thus hampering the elucidation of links between Arctic sea-ice loss and 
California’s rainfall. This is one advantage of the experimental configuration used here. By design, the convection, 
atmospheric circulation, and precipitation responses described here are directly related to sea-ice changes in each 
hemisphere, and not to changes in anthropogenic and natural forcings, or deep-ocean feedbacks.”). 
182 Jahn A. (2018) Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming, NATURE 
CLIMATE CHANGE 8:409–413, 412 (“Hence, if temperatures should eventually decline again, sea ice will increase at 
the same rate per °C as it was lost. This potential for a recovery of sea ice when temperatures decline is shown in the 
the 1.5 °C OS simulation, and agrees with previous work on the reversibility of Arctic sea-ice loss. However, to 
return sea ice to present-day conditions, the atmospheric CO2 concentrations need to be reduced below current 
values.”). 
183 Hezel P. J., et al. (2014) Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs, CRYSOPHERE 
8:1195–1204, 1197 (“Model studies have consistently shown that the Arctic sea ice recovers in experiments after the 
model is forced into an ice-free state. This is true for both annually ice-free conditions achieved via radiative forcing 
(Armour et al., 2011; Ridley et al., 2012) and for seasonally ice-free conditions achieved by imposed removal 
(Tietsche et al., 2011). Such results have been obtained in studies using a single model, and the CMIP5 archive 
under RCP2.6 affords a demonstration of reversibility of seasonal sea ice decline across multiple models, albeit for a 
relatively small change in forcing. In experiments using a change of forcing similar to RCP2.6 under the 
ENSEMBLES project (Johns et al., 2011), the sea ice did not show recovery on timescales up through 2100 (Körper 
et al., 2013). In Sect. 5, we examine the reversibility shown under RCP2.6 and demonstrate that the extended 
simulation through 2300 is required to distinguish the forced response from the variability.”). 
184 Hezel P. J., et al. (2014) Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs, CRYSOPHERE 
8:1195–1204, 1203 (“From a policy perspective, extended RCP2.6 indicates that a recovery of Arctic sea ice could 
begin if and when policies to reduce global greenhouse gas concentrations and hence radiative forcing are 
implemented. Extended RCP4.5 further shows that a plateau in the forcing may not be sufficient to prevent 
continued Arctic sea ice loss and a seasonally ice-free state even if the decrease in forcing begins before the 
disappearance of summer sea ice. In practice, a reduction in forcing to prevent further sea ice loss needs to be 
sufficiently large to dominate the recalcitrant warming expected from heat storage in slowly evolving parts of the 
climate system (e.g., deep ocean) (Held et al., 2010). The threshold at which a forcing reduction maintains a 
constant global mean temperature would itself be a function of the estimated equilibrium and transient climate 
sensitivities of the Earth system. As the RCP scenarios do not incorporate interactive carbon cycle processes and 
feedbacks, the impact of such processes would need to be considered in the design of any strategies to reduce 
radiative forcing.”). 
185 Desch S. J., et al. (2017) Arctic ice management, EARTH’S FUTURE 5:107–127, 107 (“As the Earth’s climate has 
changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as 
soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as 
sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and 
mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. 
Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter 
to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are 
employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. 
We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially 
where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing 
industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as 
part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.”). 
186 Desch S. J., et al. (2017) Arctic ice management, EARTH’S FUTURE 5:107–127, 121 (“We have presented a 
concept of a buoy-mounted windpump system that could carry out the required pumping specified above. We have 
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estimated the cost to construct and deploy each device to be comparable to $50,000. To deploy one device per 0.1 
km2 over the entire Arctic Ocean would cost on the order of $5 trillion, but if devices are deployed over only 10% of 
the Arctic Ocean, over 10 years, the costs are only $50 billion per year. The largest obstacles include producing the 
required steel and delivering the devices to the Arctic. Deployment over only 10% of the Arctic, though, would 
require consumption of only about 13% of the U.S. steel production, and roughly 5% of worldwide container ship 
capacity. These are expensive propositions, but within the means of governments to carry out on a scale comparable 
to the Manhattan Project.”). 
187 Field L., et al. (2018) Increasing Arctic Sea Ice Albedo Using Localized Reversible Geoengineering, EARTH’S 
FUTURE 6:882–901, 900 (“The materials used in the Ice911 treatment are considered nontoxic, consisting of sand 
component silica, and in testing to date, they have shown no adverse impact on wildlife. The risks of an ice-free 
Arctic include the Arctic’s contribution to increased world-wide temperatures through absorption rather than 
reflection of incoming summer-time solar radiation.”); see also Ice911, “It’s Time to Restore Arctic Ice” (last 
accessed 31 August 2018). 
188 Desch S. J., et al. (2017) Arctic ice management, EARTH’S FUTURE 5:107–127, 122 (“We stress that even if the 
technical problems associated with AIM were solved, and the ice in the Arctic were to thicken as we (tentatively) 
predict, this would not “solve” all the problems of anthropogenic climate change. Many severe problems would 
persist, notably the acidification of the ocean; ocean pH is decreasing by 0.0019 units per year due to increased CO2 
in the atmosphere [Doney et al., 2009]. We consider AIM to be a potential means of arresting or possibly reversing 
the loss of ice in the Arctic, thereby interrupting the ice-albedo feedback. We predict some reduction in direct 
radiative forcing that may serve to cool the Earth, but the primary advantage of AIM is to prevent the loss of sea ice 
and the increase in sunlight absorption that would accompany it. Other problems like ocean acidification would have 
to be solved by other means (e.g., reduction in CO2 emission and/or carbon dioxide capture and sequestration). AIM 
is just one potential component in a multipronged strategy for dealing with all the problems of climate change.”). 
189 Desch S. J., et al. (2017) Arctic ice management, EARTH’S FUTURE 5:107–127, 121–122 (“There are questions 
about the feasibility: does the proposed technique actually lead to local thickening of the ice over a year? Would the 
proposed device actually work robustly over multiple seasons, or are conditions in the Arctic too harsh? Could a 
system be designed to passively deliver water over a 0.1 km2 area, or is some means of active control necessary? 
Can the common problems machinery faces in Arctic conditions be solved? Also, because this technique generates 
ice by putting seawater at the surface, the ice would contain more salt than if the seawater froze to the bottom of the 
sea ice. The difference is probably slight, as first-year sea ice is naturally salty, becoming fresher each year by the 
process of brine rejection. But it is not clear how this would affect summer melting or the strength of the ice. 
Questions about the feasibility of the device and its local effects are probably best solved by building a prototype 
and experimenting with it in the field. …There are also questions about the collateral effects of producing and 
deploying such a large number (at least 10 million) buoys across the Arctic. We have argued that the impact on CO2 
emissions is probably negligible, but the environmental impact of the manufacture of so many devices, comparable 
in scope to the automotive industry, should be assessed. The effects of the presence of the devices themselves on 
local Arctic ecosystems, and their interaction with sea life, should be assessed as well.”). 
190  Jackson L. S., et al. (2015) Assessing the controllability of Arctic sea ice extent by sulfate aerosol 
geoengineering, GEOPHYSICAL RESEARCH LETTERS 42:1223–1231, 1223 (“In an assessment of how Arctic sea ice 
cover could be remediated in a warming world, we simulated the injection of SO2 into the Arctic stratosphere 
making annual adjustments to injection rates. We treated one climate model realization as a surrogate “real world” 
with imperfect “observations” and no rerunning or reference to control simulations. SO2 injection rates were 
proposed using a novel model predictive control regime which incorporated a second simpler climate model to 
forecast “optimal” decision pathways. Commencing the simulation in 2018, Arctic sea ice cover was remediated by 
2043 and maintained until solar geoengineering was terminated. We found quantifying climate side effects 
problematic because internal climate variability hampered detection of regional climate changes beyond the Arctic. 
Nevertheless, through decision maker learning and the accumulation of at least 10 years time series data exploited 
through an annual review cycle, uncertainties in observations and forcings were successfully managed.”). 
191  Jackson L. S., et al. (2015) Assessing the controllability of Arctic sea ice extent by sulfate aerosol 
geoengineering, GEOPHYSICAL RESEARCH LETTERS 42:1223–1231, 1230 (“Our injection amounts (up to 12 
Tg[SO2]/yr) were large, equivalent to more than 50% of the SO2 emissions from the 1991 Mount Pinatubo eruption 
[Guo et al., 2004], and would require more than 1000 KC-135 tanker aircraft flights per day during peak injection 
periods [Robock et al., 2009]. It remains uncertain whether the stratospheric aerosol concentration would increase 
linearly with injection rate [Heckendorn et al., 2009] and whether an efficient distribution of aerosol particle size 
could be sustained [Niemeier et al., 2011]. Accelerated climate change on termination of SRM, also demonstrated 
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by Jones et al. [2013], shows climate to be vulnerable to unplanned disruption of SRM injections [Baum et al., 
2013]. We found statistically significant differences in regional climate persisted into the 2090s even when global 
mean climate had returned close to the nongeoengineered state.”). 
192 World Meteorological Organization (WMO) (2018) SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 2018, 
Global Ozone Research and Monitoring Project–Report No. 58, 6.16 (“Column ozone changes as the result of 
stratospheric aerosol geoengineering therefore depends on the injection amount, timing (ODS loading), and injection 
strategy (influencing aerosol size and location; Appendix 6A). Relatively small and constant injections of 2.5–4 Tg 
S yr−1 between 2020 and 2070, which would result in 0.5°C of surface cooling, are calculated to lead to an 
approximately 4% reduction in the global stratospheric column ozone for 2020 and only 1% reduction by 2070 
(Pitatry et al., 2014; Xia et al., 2017). Much larger injection amounts that would lead to a surface temperature 
cooling of around 2°C in 2040– 2050, based on a single model study, would result in reductions in column ozone of 
28–40% in October over Southern Hemisphere (SH) high latitudes and 8–18% for NH high latitudes in March, with 
varying values depending on the injection altitude (Tilmes et al., 2018). Injections closer to the tropopause cause a 
stronger dynamical response and could result in up to an 8% increase in column ozone in NH winter mid- and high 
latitudes. A single modeling transient simulation based on RCP8.5 greenhouse gas forcings with continuously 
increasing SO2 injections between 2020 and 2099 and decreasing ODSs would result in approximately constant 
change in column ozone in high polar latitudes (20–23% in October over the SH and 10–12% in March over the NH 
polar latitudes) and slightly larger (3–5%) column ozone values compared to non-geoengineering conditions for 
tropics and winter northern mid-latitudes by the end of the 21st century (Richter et al., 2018).”). 
193 Schaefer K., et al. (2011) Amount and timing of permafrost carbon release in response to climate warming, 
TELLUS SERIES B CHEMICAL & PHYSICAL METEOROLOGY 63(2):165–180, 165 (“Permafrost is soil at or below 0ºC 
for at least two consecutive years.”); see also Arctic Monitoring and Assessment Programme (AMAP) (2017) 
ADAPTATION ACTIONS FOR A CHANGING ARCTIC: PERSPECTIVES FROM THE BARENTS AREA, 12 (“Permafrost (cryotic 
soils) is defined as soil(s) that remains at or below the freezing point of water for at least two consecutive years. 
Permafrost can only develop when the mean annual air temperature is low enough and snowfall in winter is limited, 
to allow heat flux from the ground.”). 
194 Chadburn S. E., et al. (2017) An observation-based constraint on permafrost loss as a function of global 
warming, NATURE CLIMATE CHANGE 7:340–344, 340 (“The estimated permafrost area is 15.5 million km2 using this 
technique (12.0–18.2 million km2 using minimum/maximum curves), which compares well to 15.0 million km2 from 
observations (12.6–18.4 million km2).”). 
195 Schaefer K., et al. (2014) The Impact of the Permafrost Carbon Feedback on Global Climate, Environmental 
Research Letters 9:1–9, 2 (“If temperatures rise and permafrost thaws, the organic material will also thaw and begin 
to decay, releasing carbon dioxide (CO2) and methane (CH4) into the atmosphere and amplifying the warming due to 
anthropogenic greenhouse gas emissions … The PCF is irreversible on human time scales because in a warming 
climate, the burial mechanisms described above slow down or stop, so there is no way to convert CO2 into organic 
matter and freeze it back into the permafrost.”); see also Schaefer K., et al. (2011) Amount and timing of permafrost 
carbon release in response to climate warming, TELLUS SERIES B CHEMICAL & PHYSICAL METEOROLOGY 
63(2):165–180, 166 (“The permafrost carbon feedback (PCF) is an amplification of surface warming due to the 
release into the atmosphere of carbon currently frozen in permafrost (Fig. 1). As atmospheric CO2 and methane 
concentrations increase, surface air temperatures will increase, causing permafrost degradation and thawing some 
portion of the permafrost carbon. Once permafrost carbon thaws, microbial decay will resume, increasing respiration 
fluxes to the atmosphere and atmospheric concentrations of CO2 and methane. This will in turn amplify the rate of 
atmospheric warming and accelerate permafrost degradation, resulting in a positive PCF feedback loop on climate 
(Zimov et al., 2006b).”). 
196 Abbott B. W., et al. (2016) Biomass Offsets Little to None of Permafrost Carbon Release from Soils, Streams, 
and Wildfire: an Expert Assessment, ENVTL. RESEARCH LETTERS 11(034014):1–13, 9. (“Over the past several 
decades, the permafrost region has removed an average of 500 Tg carbon yr−1 from the atmosphere (McGuire et al 
2009, Pan et al 2011, Hayes et al 2011). Combining our estimates of biomass uptake with a recent projection of 
permafrost soil carbon release (Schuur et al 2013) suggests that the permafrost region will become a carbon source 
to the atmosphere by 2100 for all warming scenarios…[B]ecause estimates of change in biomass are similar across 
warming scenarios but permafrost carbon release is strongly temperature-sensitive, the emissions gap widens for 
warmer scenarios, resulting in five-times more net carbon release under RCP8.5 than RCP2.6. This suggests that 65 
to 85% of permafrost carbon release could be avoided if human emissions are actively reduced—i.e. if emissions 
follow RCP2.6 instead of RCP8.5….”). 
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197 Schneider von Deimling T., et al. (2015) Observation-based modelling of permafrost carbon fluxes with 
accounting for deep carbon deposits and thermokarst activity, BIOGEOSCIENCES 12:3469–3488, 3470 (“By 
ultimately increasing the atmospheric concentration of the greenhouse gases CO2 and CH4, the carbon release from 
thawing permafrost regions is considered a potentially large positive feedback in the climate–carbon system 
(Schaefer et al., 2014; Schuur et al., 2015). Given the long millennial timescale processes leading to the build-up of 
old carbon in permafrost soils, future rapid releases from these deposits are irreversible on a human timescale.”). 
198 Schuur E. A. G., et al. (2015) Climate Change and the Permafrost Carbon Feedback, NATURE 520:171–179, 171 
(“Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A 
warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and 
the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but 
the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain 
uncertain.”); see also Montzka S. A., et al. (2011) Non-CO2 Greenhouse Gases and Climate Change, NATURE 476 
43–50, 45 (“Taken together, the evidence suggests that the renewed increases in atmospheric CH4 observed during 
2007 and 2008 arose primarily from enhanced natural wetland emissions as a result of anomalously high 
temperatures in the Arctic and greater than average precipitation in the tropics associated with a persistent La Niña. 
The causes of the continued increases in 2009 and 2010 are not yet clear, but may be related to the strong La Niña 
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transported there from remote sources and to radiative forcing that takes place in areas of the northern hemisphere 
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also Shindell D., et al. (2012) Simultaneously Mitigating Near-Term Climate Change and Improving Human Health 
and Food Security, SCIENCE 335(6065):183–189, 183 (“This strategy avoids 0.7 to 4.7 million annual premature 
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TROPOSPHERIC OZONE, 173 (“The combined impact of the package of measures studied here would lead to a 
worldwide benefit in crop yields compared to the 2030 reference scenario from a 1.3 per cent (+1.5 per cent, –1.2 
per cent) yield increase for rice to a 3.2 per cent (+1.6 per cent, –1.1 per cent) increase for soybeans. These benefits 
arise from the reductions in tropospheric O3 resulting from application of the measures. The largest benefits emerge 
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Particulate Matter (PM) exhaust emission standards that require the use of best available control technologies (such 
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other countries to provide technical cooperation to reduce emissions from diesel powered mobile sources is 
particularly needed. Countries can complement policies and programs targeting diesel vehicles and engines by 
adopting incentives that encourage a shift from diesel passenger vehicles to lower emitting vehicle technologies, 
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and enhance methane emissions data availability.”). 
457 Arctic Council Secretariat (2017) EXPERT GROUP ON BLACK CARBON AND METHANE: SUMMARY OF PROGRESS 
AND RECOMMENDATIONS 2017, 7 (“Reduce black carbon emissions from new and legacy residential-scale biomass 
combustion appliances, while also adopting energy efficiency measures for homes that are primarily heated using 
biomass. Developing and deploying effective education and awareness campaigns to reduce operator error is 
essential to reducing emissions from all in-use heating appliances.  Develop and, where possible, adopt a 
standardized testing protocol for black carbon emissions to ensure that new biomass combustion appliances are 
cleaner and more efficient. This can support the development of voluntary or regulatory performance and energy 
efficiency standards and incentive programs. Work with appliance manufacturers to ensure lower emitting and more 
efficient appliances are widely available and affordable.  Incentivize replacement of older biomass combustion 
appliances with cleaner and more efficient alternatives to reduce emissions from legacy heating appliances.”). 
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measures keeping in mind the urgency of the long-term temperature goal set forth in the Paris Agreement. The 



 134 

                                                                                                                                                       
Expert Group also encourages Arctic States to consider areas where domestic mitigation could be complemented by 
international cooperation with non-Arctic States, especially for major source categories that strongly impact the 
Arctic. These contributions through international cooperation should be systematically evaluated and included in 
future biennial national reports as called for under the Framework.”); see also Arctic Monitoring and Assessment 
Programme (AMAP) (2015) AMAP ASSESSMENT 2015: METHANE AS AN ARCTIC CLIMATE FORCER, 49–50 (“The 
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reduced leakage from natural gas production, transmission and distribution; source separation and treatment of 
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mining degasification and installation of ventilation air oxidizers during mining. The technical abatement potential 
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of methane from enteric fermentation through changes in animal diets for ruminant livestock and anaerobic 
digestion of manure (Hristov et al. 2013). More extensive emission reductions in the agricultural sector would 
involve non-technical options, such as broader structural changes in production and consumption systems (see Box 
5.2).”). 
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through direct atmospheric effects and by enhanced melting of ice and snow (i.e. ice-albedo feedbacks). It should be 
noted that even black carbon from non-proximate sources contributes to overall warming of the planet, including the 
Arctic.”). 
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emission reductions primarily by: reducing methane leakage, venting and flaring from the oil and natural gas sector; 
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ARCTIC CLIMATE FORCER, 39 (“Since methane is well mixed in the global atmosphere, it is important to assess the 
potential to reduce warming in the Arctic region through reductions in methane emissions globally as well as by the 
Arctic nations themselves. It is estimated that more than half of the anthropogenic methane emissions from Arctic 
nations come from the fossil fuel sector and that these contribute about a third of global methane emissions from 
fossil fuel sources. Managing future methane emissions from these activities is therefore of particular importance in 
Arctic nations. Methane emissions from fossil fuel sources have thus received special attention in this chapter.”). 
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and wastewater.”). See also AMAP) (2015) AMAP ASSESSMENT 2015: METHANE AS AN ARCTIC CLIMATE FORCER, 
42 (Figure 5.1). 
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sufficient NOX and it has been estimated that anthropogenic CH4 emissions may be responsible for about half of pre-
industrial to present-day O3 radiative forcing (Stevenson et al. 2013) as well as about half of the projected future 
surface O3 increases (Prather et al. 2003). CH4 oxidation contributes to background O3 away from emission regions, 
such as in the Arctic and may be responsible for a significant proportion of the positive trends in O3 concentrations 
observed in the northern hemisphere over the past decades (Parrish et al. 2012b). Fiore et al. (2009) estimated that a 
20% reduction in anthropogenic CH4 emissions would lead to about a 1 ppbv decrease in tropospheric O3, 
comparable to combined reductions in NOX, CO, and VOC emissions. However, although reduced NOX emissions 
lead to decreased O3 levels, they also lead to decreased OH concentrations and therefore increased CH4, thus 
offsetting the climate benefit of decreased O3 (West et al. 2007).”). 
465 Bond T. C., et al. (2013) Bounding the role of black carbon in the climate system: A scientific assessment, J. 
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also may yield a reduction in net positive forcing. The net effect of other sources, such as small industrial coal 
boilers and ships, depends on the sulfur content, and net climate benefits are possible by mitigating some individual 
source types.”). 
466 Bahadur R., et al. (2011) Impact of California’s air pollution laws on black carbon and their implications for 
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Yr-1 by 2008. We attribute the observed negative trends to the reduction in vehicular emissions due to stringent 
statewide regulations. Our conclusion that the reduction in diesel emissions is a primary cause of the observed BC 
reduction is also substantiated by a significant decrease in the ratio of BC to non-BC aerosols.”). 
467 Arctic Council Secretariat (2017) EXPERT GROUP ON BLACK CARBON AND METHANE: SUMMARY OF PROGRESS 
AND RECOMMENDATIONS 2017, 17 (“According to the 2013 inventories, on-road and non-road mobile sources 
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sources: Mandatory exhaust emission standards for new vehicles and engines; Targeted policies and programs for 
legacy vehicles and engines (i.e., those still in use that were  manufactured before current standards took effect); 
Mandatory standards to reduce sulphur levels in fuels for use in vehicles and engines, which  enable the use of best 
available control technologies, such as diesel particulate filters (DPFs); and Shifts to reduce emissions overall, such 
as to alternate fuels or transportation modes.”). 
468 Sand M., et al. (2016) Response of Arctic temperature to changes in emissions of short-lived climate forcers, 
NATURE CLIMATE CHANGE 6:286–289, 287 (“In terms of volume, the largest contribution to the reduction in Arctic 
warming comes from an improved domestic heating and cooking sector in Asia and in the rest of the world. Such 
measures see large cuts in warming from BC, although those benefits are offset 25–40% by reductions in the cooling 
effect of co-emitted OC.”). 
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Wick Lamps, ENVTL. SCIENCE & TECHNOLOGY 46(24):13531–13538, 13531 (“Kerosene-fueled wick lamps used in 
millions of developing-country households are a significant but overlooked source of black carbon (BC) 
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AND CLEAN AIR BENEFITS: ACTIONS FOR CONTROLLING SHORT-LIVED CLIMATE FORCERS, x (“National efforts to 
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most of the burden with 2.8 and 2.3 million deaths, respectively. Almost 680’000 deaths occur in Africa, about 
400’000 in the Eastern Mediterranean region, 287’000 in Europe and 131’000 in the Americas. The remaining 
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485 World Health Organization (WHO) (2014) Burden of disease from Ambient Air Pollution for 2012, Summary of 
Results (“Globally, 3.7 million deaths were attributable to ambient air pollution (AAP) in 2012. About 88% of these 
deaths occur in low- and middle-income (LMI) countries, which represent 82% of the world population. The 
Western Pacific and South East Asian regions bear most of the burden with 1.67 million and 936’000 deaths, 
respectively. About 236’000 deaths occur in the Eastern Mediterranean region, 200’000 in Europe, 176’000 in 
Africa, and 58’000 in the Americas. The remaining deaths occur in high-income countries of Europe (280’000), 
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low and middle income (LMI) countries. The South East Asian and Western Pacific regions bear most of the burden 
with 1.69 and 1.62 million deaths, respectively. Almost 600’000 deaths occur in Africa, 200’000 in the Eastern 
Mediterranean region, 99’000 in Europe and 81’000 in the Americas. The remaining 19’000 deaths occur in high 
income countries.”). 
487 OECD (2012) OECD Environmental Outlook to 2050: The Consequences of Inaction, 1 (“Air pollution is set to 
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(range, $4–88) has been returned to the economy for every dollar invested in air pollution control since 1970, which 
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place outside emission control areas.8 To meet requirements, shipowners and operators continue to adopt various 
strategies, including installing scrubbers and switching to liquefied natural gas and other low-sulphur fuels. The 
Committee approved guidelines providing an agreed method for sampling to enable the effective control and 
enforcement of sulphur content of liquid fuel oil used on board ships under the provisions of the International 
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2018). 
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2050 under some projections of Arctic vessel traffic. Flaring of excess natural gas at oil and gas fields, an alternative 
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impacts given their proximity to Arctic snow and ice. In several Arctic nations, residential combustion is projected 
to remain or become the key anthropogenic source of black carbon.”). 
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safe and sustainable shipping in all regions of the world, including the most challenging and difficult.”). 
576 International Maritime Organization (IMO), RESOLUTION MEPC.189(60)—AMENDMENTS TO THE ANNEX OF THE 
PROTOCOL OF 1978 RELATING TO THE INTERNATIONAL CONVENTION FOR THE PREVENTION OF POLLUTION FROM 
SHIPS, 1973, 26 March 2010. 
577 International Maritime Organization (IMO) (2014) INTERNATIONAL CODE FOR SHIPS OPERATING IN POLAR 
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on 1 August 2011. The amendments add a new chapter 9 to MARPOL Annex I with a new regulation 43 which 
prohibits the carriage in bulk as cargo, or carriage and use as fuel, of: crude oils having a density at 15°C higher than 
900 kg/m3; oils, other than crude oils, having a density at 15°C higher than 900 kg/m3 or a kinematic viscosity at 
50°C higher than 180 mm2/s; or bitumen, tar and their emulsions. An exception is envisaged for vessels engaged in 
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innovations and adaption of new technology is required. Climate is one of the most important issues in the world, 
and carrying around 80% of global trade, the shipping industry is vital to finding solutions. By now, Maersk´s 
relative CO2 emissions have been reduced by 46% (baseline 2007), approx. 9% more than the industry average. As 
world trade and thereby shipping volumes will continue to grow, efficiency improvements on the current fossil 
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