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Glossary and Acronyms 

AC air conditioning 

Cooling access gap Those individuals or households who do not have access to sufficient 
space cooling for comfort or refrigeration now or in the near future, and 
as a result do not benefit from the socioeconomic, health, and 
environmental benefits of this access, and those who are expected to 
gain access to cooling in the next decade(s) but are unlikely to have 
access to sustainable, efficient, and affordable cooling solutions under a 
business-as-usual development path (Sustainable Energy for All, 2019). 

Banks Ozone-depleting or high-GWP chemicals contained within 
refrigerators, air conditioners, and other cooling equipment, as well as 
in chemical stockpiles and foams. 

Baseline In the context of climate-related pathways, baseline scenarios refer to 
scenarios that assume that no mitigation policies or measures will be 
implemented beyond those that are already in force or are planned to be 
adopted. 

Black carbon The substance formed through the incomplete combustion of fossil 
fuels, biofuels, and biomass. Black carbon contributes to warming by 
absorbing heat in the atmosphere and by reducing albedo when 
deposited on snow and ice. 

Buyers clubs A buyers club, either public or private, pools members' collective 
buying power, enabling them to make purchases of higher performance 
or quality at lower prices, or to purchase goods that might be difficult to 
purchase in small amounts. 

Carbon budget The estimated cumulative amount of global carbon dioxide emissions 
that can be emitted for temperatures to stay below a given temperature 
rise limit or goal above a reference period, taking into account global 
surface temperature contributions of non-CO2 climate forcers. 

Carbon dioxide 
equivalent (CO2e) 

For a given amount of a greenhouse gas other than CO2, it is the amount 
of CO2 that would have the same global warming impact over a certain 
time period. In this report, all CO2e is according to 100-yr Global 
Warming Potential. 

Carbon intensity The amount of CO2 released per unit of another variable such as gross 
domestic product or energy produced 

CCAC Climate and Clean Air Coalition 

CDD cooling degree days – The number of degrees that a day’s average 
temperature is above a reference temperature, for example 18˚C. 

CFC chlorofluorocarbon – CFCs belong to a family of factory-made gases 
that also includes hydrochlorofluorocarbons (HCFCs) and 
hydrofluorocarbons (HFCs) that are used for air conditioning, 
refrigeration, foam insulation, and other specialized sectors. CFCs are 
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major ozone-depleting substances phased out by the Montreal Protocol. 
Many CFCs are also potent greenhouse gases. 

CO2 carbon dioxide 

Cold chain The supply chain needed to maintain a low temperature range, 
consisting of production, storage, and distribution activities. Proper cold 
chain preserves, extends, and ensures the shelf-life of products. 

Cooling Cooling refers to any human activity, design, or technology that 
dissipates or reduces temperatures and contributes to achieving: (i) 
reasonable thermal comfort for people, or (ii) preservation of products 
and produce (medicines, food, etc.), and (iii) effective and efficient 
processes (for example data centres, industrial or agricultural 
production and mining). Sustainable—or "clean"—cooling refers to 
cooling that uses climate-friendly refrigerants and without other 
environmental damage including climate impact, in line with the 
objectives of the Paris Agreement on Climate Change and the Montreal 
Protocol. Clean cooling necessarily must be accessible and affordable 
to help deliver our societal, economic and health goals. 

[Mechanical] Cooling 
equipment 

Stationary air conditioning (AC and other space conditioning for 
comfort); refrigeration (cooling to preserve food, goods, medicines, 
equipment); and mobile air conditioning and refrigerated transport. 

CSPF Cooling Seasonal Performance Factor 

Drop-in alternatives Substances that can be used in existing equipment without 
modifications. Drop-in alternatives were used to replace CFCs and are 
possible with some HFC-using equipment. 

EE energy efficiency 

EL-LCCP Enhanced and Localized Life Cycle Climate Performance 

ESI Energy Savings Insurance 

EV electric vehicle 

GHG greenhouse gas 

GDP gross domestic product 

Gt gigatons; billion tons 

GtCO2 gigatons of CO2 

GtCO2e gigatons of CO2 equivalent 

GW gigawatts 

GWP global warming potential – An index representing the relative 
effectiveness of different gases in absorbing outgoing infrared radiation, 
over a given time period, relative to CO2, which has a GWP of 1. 

HC hydrocarbon 
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HCFC hydrochlorofluorocarbon – chemicals that deplete the ozone layer, but 
have less potency compared to CFCs. Many HCFCs are potent 
greenhouse gases.  

HFC hydrofluorocarbon – chemicals that do not deplete the ozone layer and 
have been used as substitutes for CFCs and HCFCs. Many HFCs are 
potent greenhouse gases. 

HFO hydrofluoroolefin 

High-ambient 
temperature 

Conditions (or countries experiencing conditions) with an average of at 
least two months per year over consecutive years with a peak monthly 
average temperature above 35˚C. 

IEA International Energy Agency 

IoT Internet-of-Things 

IPCC Intergovernmental Panel on Climate Change – the United Nations body 
tasked with assessing the science related to climate change. 

ISO International Organization for Standardization 

K-CEP Kigali Cooling Efficiency Program 

Kigali Amendment An amendment to the Montreal Protocol that aims for the phasedown of 
production and consumption of HFCs. 

LBNL Lawrence Berkeley National Laboratory 

LCCP Life Cycle Climate Performance 

Leapfrogging The ability of developing countries to bypass intermediate technologies, 
like HFCs, and transition instead to advanced clean technologies. 

LED light-emitting diodes 

MAC mobile air conditioning, also referred to as motor vehicle air 
conditioning 

Mboe/d  million barrels of oil equivalent per day 

MEPS minimum energy performance standard 

MLF Multilateral Fund for the Implementation of the Montreal Protocol 

MtCO2e million tons carbon dioxide equivalent 

NDC Nationally Determined Contribution – A submission by a Party to the 
Paris Agreement representing that Party’s climate plans and actions to 
meet the agreement’s temperature goals, including climate-related 
targets, policies and measures governments aims to implement in 
response to climate change and as a contribution to global climate 
action.  

NOx nitrogen oxides 

ODS ozone-depleting substance 

OECD Organisation for Economic Co-operation and Development 
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OzonAction A UN Environment Programme (UNEP) body that works to strengthen 
the capacity of governments and industry in developing countries to 
meet their obligations under the Montreal Protocol.  

Paris Agreement An international agreement under the United Nations Framework 
Convention on Climate Change (UNFCCC) that aims to hold the 
increase in the global average temperature to well below 2°C above pre-
industrial levels, aiming for 1.5°C. 

Peak electricity load The highest electricity demand occurring within a given period on an 
electric grid and a critical baseline for planning the level of generating 
capacity required to meet demand in a utility service territory. 

PM2.5 fine particulate matter (2.5 micrometres is one-400th of a millimetre). 

PV photovoltaic  

RAC Depending on usage, either “refrigeration and air conditioning,” or 
“room air conditioning,” which generally includes lower capacity 
window or unducted split units designed to cool one room.  

RACHP refrigeration, air conditioning, and heat pump  

Radiative Forcing A measure of how a substance influences the energy balance of Earth. 
The higher the value, the more it adds to a globally averaged surface 
temperature increase.  

Rotterdam 
Convention 

An international convention to protect human health and the 
environment from potential harm from the international trade of certain 
hazardous chemicals. 

SAP Scientific Assessment Panel – The Montreal Protocol panel to assess the 
status of the depletion of the ozone layer and related atmospheric 
science issues. 

Secondary loop  A refrigeration system that incorporates two different refrigerants to 
provide cooling, which can provide for more safety and efficiency. The 
primary loop uses a direct expansion design and a compressor to 
circulate the refrigerant. 

Space cooling Cooling that encompasses many forms of comfort cooling, including air 
conditioning, fans, and evaporative cooling. 

SDGs Sustainable Development Goals – The 17 global goals for development 
for all countries established by the United Nations as goals to be 
achieved by 2030. 

SEforAll Sustainable Energy for All 

SO2 sulphur dioxide 

TEAP Technology and Economic Assessment Panel – The Montreal Protocol 
panel to assess technical information related to alternative technologies 
to eliminate the use of ozone-depleting substances. 

TEWI total equivalent warming index 
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UNEP United Nations Environment Programme 

UNFCCC United Nations Framework Convention on Climate Change 

Urban heat island The relative warmth of a city compared with surrounding rural areas, 
often higher in the city due to changes in runoff, effects on heat 
retention, and changes in surface albedo. 

USD United States dollar 

WMO World Meteorological Organization 
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Abstract 

The planet has already warmed 1ºC or more since pre-industrial times, and at the current pace will 
add 50% more warming to surpass 1.5ºC as early as 2030, reaching levels outside human 
experience and making it more difficult for human and natural systems to adapt. As temperatures 
continue to increase, heat waves will become more frequent and intense, and societies will 
necessarily adapt by using more air conditioning and refrigeration to reduce heat-related illness 
and death, ensure continuing productivity, and minimise food loss. This implies a potentially very 
large additional demand for electricity with additional carbon emissions. Fast policy action can 
keep the growing demand for cooling from using up a significant amount of the remaining carbon 
budget for limiting warming to 1.5°C. 

The global phasedown of hydrofluorocarbon (HFC) refrigerants under the Kigali Amendment to 
the Montreal Protocol will make a crucial contribution to slowing climate change and meeting the 
goals of the 2015 Paris Agreement. An even faster phasedown could be achieved with a more 
extensive replacement of high global warming potential (GWP) HFCs with commercially available 
low-GWP alternatives in refrigeration and air conditioning equipment. Climate emissions also can 
be reduced by collecting HFCs at the end of the useful life of cooling equipment and either 
recycling or destroying them. Such strategies could avoid up to 0.5°C of warming by 2100. 

Transitioning to high efficiency cooling equipment can more than double the climate benefits of 
the HFC phasedown in the near-term by reducing emissions of carbon dioxide (CO2) and black 
carbon from the electricity and diesel used to run air conditioners and other cooling equipment. 
This also will provide significant economic, health, and development co-benefits. Doubling the 
energy efficiency of stationary air conditioning by 2050 would reduce the need for 1,300 gigawatts 
of generation capacity, the equivalent of all the coal-fired power generation capacity in China and 
India in 2018 and would almost halve annual electricity costs per capita for space cooling in 2050. 
Reducing energy demand, by improving cooling efficiency and reducing the need for cooling by 
improving building and urban design, can reduce energy-related air pollutants and climate 
emissions, thereby contributing to improved public and ecosystem health. 

Robust policies to promote the use of best technologies currently available for efficient and 
climate-friendly cooling have the potential to reduce climate emissions from the stationary air 
conditioning and refrigeration sectors by 130–260 GtCO2e by 2050, and 210–460 GtCO2e by 2060. 
A quarter of this mitigation is from phasing down HFCs and switching to alternatives with low-
GWP, while three-quarters is from improving energy efficiency of cooling equipment and reducing 
electricity demand, which helps achieve a more rapid transition to carbon-free electricity 
worldwide. The mobile air conditioning sector, where energy consumption is expected to nearly 
triple by 2050, offers significantly more mitigation potential.  

Policies and financing strategies can promote fast HFC phasedown in parallel with improvements 
in energy efficiency of cooling equipment. The significant climate and development benefits 
available from fast action to phase down HFCs and improve the energy efficiency of the cooling 
sector have been widely recognized by various international initiatives and collaborations. 

###
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Preface 
 

 
As we face the growing climate emergency, where the world is starting to warm itself with self-
reinforcing feedbacks, and tipping points are fast approaching, it is instructive to look to the 
Montreal Protocol on Substances that Deplete the Ozone Layer for guidance and inspiration. 
 
The Montreal Protocol is widely acknowledged as the world’s most successful environmental 
treaty. It solved the first great threat to the global atmosphere from chlorofluorocarbons and other 
fluorinated gases that were destroying the protective stratospheric ozone shield. At the same time, 
the Protocol has done more to reduce the climate threat than any other agreement. This is because 
fluorinated gases are powerful greenhouse gases, as well as ozone-depleting substances. The 
Montreal Protocol and preceding efforts to eliminate CFCs have avoided an amount of warming 
that otherwise would have equalled the contribution from carbon dioxide (Velders et al. 2007). 
 
It is astounding that a single treaty has done this double duty so brilliantly. There are many lessons 
to be learned, including that the Montreal Protocol has always been a “start and strengthen” treaty: 
it started with mandatory control measures to cut fluorinated gases on a precise schedule, learned 
on-the-job by striving to meet the controls, and gained confidence from its initial success to do 
still more for the environment. 
 
The Montreal Protocol’s latest control measure is the 2016 Kigali Amendment to phase down 
hydrofluorocarbons, or HFCs, primarily used as refrigerants. While HFCs do not affect the ozone 
layer, they are potent greenhouse gases and phasing them down has the potential to avoid up to 
0.5°C of warming by the end of the century. The initial phasedown schedule of the Kigali 
Amendment ensures about 90% of this will be captured. 
 
Just minutes after the Kigali Amendment was agreed, the Parties to the Montreal Protocol passed 
the first of a series of decisions to improve the energy efficiency of cooling equipment in parallel 
with the switch from HFCs to climate-friendly refrigerants. Improving the efficiency of cooling 
equipment has the potential to more than double the climate benefits of the Kigali Amendment, 
with the combined potential to avoid the equivalent of up to 260 billion tons of carbon dioxide by 
2050. This will save nearly $3 trillion dollars in energy generation and transmission costs, in 
addition to reducing consumers’ monthly electricity bills, while also protecting public health and 
agricultural productivity by reducing air pollution. 
 
This synthesis report analyses these and other benefits and provides more detailed support for the 
Cooling Emissions and Policy Synthesis Report from UNEP and IEA that is being published 
simultaneously.1 
 
We should all draw courage from the success of the Montreal Protocol and the parallel efforts to 
improve energy efficiency of cooling equipment, which together represents one of the most 
significant climate change mitigation strategies available. 
   
Mario Molina & Durwood Zaelke  
Co-Chairs, Steering Committee 
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CHAPTER 1: SUMMARY AND INTRODUCTION 

In a warming world, prosperity and civilization depend more and more on access to cooling,i from 
the “cold chain” necessary to ensure the supply and safety of the food we consume, to the 
refrigeration needed for vaccines to fight global epidemics, from the cooling of data centres to the 
comfort, productivity, and health of workers, students, and vulnerable populations. Globally, there 
are an estimated 3.6 billion cooling appliances in use today, projected to increase to 9.5 billion by 
2050. Providing cooling for all who will need it in a warming world—and not just those who can 
afford it—could require 14 billion cooling appliances by 2050.2 

The growing demand for cooling will contribute significantly to climate change. This is from both 
the emissions of HFCs and other refrigerants and from the CO2 and black carbon emissions from 
the mostly fossil fuel-based energy powering air conditioners and other cooling equipment, 
especially during peak power demand, which is often driven largely by the use of air conditioners. 
As the climate warms, the growing demand for cooling is thus creating still more warming in a 
destructive feedback loop. 

Cities like Delhi3 and Beijing4 are already using half of their electricity to run air conditioners 
during the hot season. Even in France, demand for air conditioners in 2018 grew by almost 200% 
above 2017.5 In India, air conditioner ownership has increased from two to 14 million units 
between 2006 and 2016 and is forecast to reach 200 million by 2030.6 For context, at the global 
level in 2017, the incremental power load of new air conditioners outpaced the growth in solar 
renewables; while that year was a record for solar growth, with 94 gigawatts (GW) of total solar 
generation deployed globally, it was not as much as the incremental load new air conditioners 
added to the grid that year, which was approximately 100 GW.7 

However, robust policies that drive the use of best available technologies can cut cumulative 
emissions from the stationary air conditioning and refrigeration sectors by 38–60 GtCO2e by 
2030, by 130–260 GtCO2e by 2050, and by 210–460 GtCO2e by 2060, depending on future rates 
of decarbonization of electricity generation (see Table 3.1) (for comparison, the global annual CO2 
emissions from fossil fuel energy sources in 2018 totalled 33.1 GtCO28). A quarter of the 
mitigation is from phasing down HFC refrigerants and switching to alternatives with low-GWP, 
while three-quarters is from ensuring that cooling equipment uses the best available technology to 
improve energy efficiency and reduce the use of electricity (see Table 3.1).9 

An International Energy Agency (IEA) analysis and other supporting studies conclude that cost-
effective policies to double the efficiency of new stationary air conditioners alone would contribute 

i Cooling refers to any human activity, design or technology that dissipates or reduces temperatures and contributes to 
achieving: (i) reasonable thermal comfort for people, or (ii) preservation of products and produce (medicines, food, 
etc.), and (iii) effective and efficient processes (for example data centres, industrial or agricultural production and 
mining). Sustainable—or “clean”—cooling refers to cooling that uses climate-friendly refrigerants and without other 
environmental damage including climate impact, in line with the objectives of the Paris Agreement on Climate Change 
and the Montreal Protocol. Clean cooling necessarily must be accessible and affordable to help deliver our societal, 
economic, and health goals. Currently an estimated 680 million people living in urban slums have little or no access 
to cooling, with an additional 365 million people living in poor rural areas also at high risk (Sustainable Energy for 
All, 2019). 
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cumulative emission reductions of approximately 6 GtCO2 by 2030 and 39 GtCO2 by 2050 in an 
already decarbonizing electricity system. The IEA notes that the mobile air conditioning sector, 
where energy consumption is expected to nearly triple by 2050, offers significantly more 
mitigation potential.10 
 
Mitigation from phasing down HFCs. HFC refrigerants with high global warming potential (GWP) 
are currently being phased down under a mandatory schedule imposed by the Kigali Amendment 
to the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol). Under 
the amendment’s initial schedule (see Box 1.4), emissions will be reduced by 33–47 GtCO2e by 
2050 and 215–371 GtCO2e by 2100 (see Table 2.2). This will avoid up to 0.4°C or more of 
warming by 2100, according to the quadrennial report of the Montreal Protocol Scientific 
Assessment Panel (SAP).11 The Kigali Amendment’s separate mandate to reduce HFC-23 will 
provide further mitigation (see Chapter 2).ii 

Rapid implementation of efficient cooling using low-GWP refrigerants will not only contribute to 
the goals of the Paris Agreement, it also will contribute to meeting the Sustainable Development 
Goals on poverty, hunger, health and well-being, affordable and clean energy, and sustainable 
cities and communities, among others. 

In addition to the HFC mitigation mandated by the Kigali Amendment, further HFC mitigation 
can be achieved by leapfrogging over HFCs and going directly into low-GWP alternatives during 
the Montreal Protocol’s ongoing phaseout of hydrochlorofluorocarbons (HCFCs). Energy-
efficient low-GWP alternatives are already available in most cooling applications (see Chapter 2). 
Such a leapfrog strategy would avoid the build-up of “banks” of HFCs embedded in cooling 
equipment. If HFC production stopped completely in 2020, instead of being phased down 
gradually, the SAP calculates that this would provide additional mitigation of 53 GtCO2e from 
2020 to 2060.12 Alternatively, the HFC banks could be captured at product end-of-life and either 
recycled or destroyed. The Kigali Amendment’s initial phasedown schedule for HFCs also could 
be accelerated, as was done in 2007 with the initial schedule for phasing out HCFCs.13 
 
Mitigation from improving energy efficiency of cooling equipment. In addition to the climate 
benefits from reducing short-lived HFCs, parallel improvement in the energy efficiency of air 
conditioning and refrigeration equipment (referred to collectively as “cooling equipment”) offers 
a near-term opportunity to significantly reduce emissions of CO2, the main long-lived climate 
pollutant. It also will reduce co-emitted black carbon,14 a potent short-lived climate forcer.15 
Deploying best available energy-efficient technologies for stationary air conditioning and 
refrigeration could avoid cumulative emissions of 150–280 GtCO2 by 2060 from reduced 
electricity-related emissions that would otherwise endure for centuries (see Table 3.1), 
significantly increasing the climate mitigation from the parallel HFC phasedown in the near-term 
(see Chapter 3; Table 3.1). 
                                                 
ii Because HFC-23 is primarily a by-product from the production of HCFC-22, it is not included in the SAP 
calculations, although HFC-23 accounted for the second-largest radiative forcing of all individual HFCs and other 
fluorinated-gases in 2016. With implementation of the Kigali Amendment, including its requirement to use best efforts 
to reduce HFC-23, future HFC-23 emissions are expected to be limited significantly. (Montzka, S.A. and G.J.M. 
Velders (Lead Authors), P.B. Krummel, J. Mühle, V.L. Orkin, S. Park, N. Shah, H. Walter-Terrinoni (2018). 
Hydrofluorocarbons (HFCs), Chapter 2 in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research 
and Monitoring Project–Report No. 58, World Meteorological Organization, Geneva, Switzerland.) 

https://www.esrl.noaa.gov/csd/assessments/ozone/2018/
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Other proven mitigation strategies include reducing the demand for mechanical cooling by 
promoting better designed buildings with passive cooling techniques, as well as better designed 
urban areas with green spaces and reflective surfaces, while also improving the “cold chain” to 
reduce food loss and waste (see Chapters 3 and 4). Harnessing renewable and waste energy for 
cooling also can reduce the demand for fossil fuel generated electricity for cooling while also 
reducing stress on the electricity distribution grids. 
 
Like the strategies for reducing HFCs, the strategies for improving the energy efficiency of cooling 
equipment can be deployed fast, at scale, and at low cost—indeed, doubling the efficiency of 
stationary cooling alone has the potential to save nearly $3 trillion in investment and operating 
costs by 2050, according to the IEA.16 The combined strategies to phase down HFCs and improve 
cooling efficiency will help achieve carbon neutrality by 2050, as called for by UN Secretary-
General António Guterres,17 and contribute to the goals of the Paris Agreement. 
 
In sum, these combined strategies represent a significant climate mitigation opportunity. They take 
advantage of the fact that countries must now start switching out of high-GWP HFCs under the 
mandate of the Kigali Amendment, and then use this to leverage fast action to improve cooling 
efficiency through a variety of policies (see Chapter 4). 
 
1.1 A Warming Planet with a Growing Population: Increasing Heat Threatens Human  

Health and Productivity.  
 
The planet has already warmed 1ºC or more since pre-industrial times, and if warming continues 
at the current rate it will add 50% more warming to surpass 1.5ºC as early as 2030.18 Moreover, 
the rate of warming is accelerating, with the rate of annual temperature increase more than 
doubling in recent decades.19 The accelerating rate of warming is making it more difficult for 
human and natural systems to adapt.20 
 
Climate change is already causing more frequent, intense, and longer heat waves, according to the 
UN Intergovernmental Panel on Climate Change (IPCC),21 leaving more people susceptible to 
heat-related morbidity and mortality as temperatures continue to rise.22 Estimates of the excess 
deaths from the European heat wave in 2003 range from between 22,000 and 35,00023 to over 
70,000.24 
 
Today almost a third of the world lives where deadly temperatures occur at least 20 days a year.25 
Extreme heat in summer threatens to substantially increase areas unsuitable for human settlement 
without cooling.26 Humid heat waves, which combine high temperature and high humidity, will 
be especially life-threatening in many highly populated regions such as China and the Eastern 
United States (US).27 Tropical and subtropical urban areas are at particular risk due to high 
population density, already high temperatures, and humidity increases driven by climate change,28 
especially those living in Africa and in South Asia.29 
 
The European heat waves in June and July 2019 set temperature records in France, Switzerland, 
Austria, Germany, the Czech Republic, and Spain,30 and contributed to July exceeding the record 
for the hottest month in modern recorded history for global average temperature.31 The probability 
of such an intense heat wave in France was at least five times higher due to human contributions.32 
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Japanese scientists found that record-setting heat waves in Japan in July 2018, which caused more 
than 1,000 human fatalities,33 would not have happened without human-induced climate change.34 
The probability of increased daily maximum temperatures and the duration of such temperatures 
is also increasing in the Middle East and North Africa, with some scenarios showing an increase 
to nearly 50°C by the end of the century from a maximum daytime temperature of 43°C during the 
reference period.35 
 
With continued warming, by the end of the century, 50 to 75% of humanity could face deadly heat 
resulting in increased demand for cooling, as well as setting off climate-forced migration.36 Even 
today, over 1.1 billion people are at significant risk from lack of cooling, which makes it harder to 
escape poverty, keep children healthy, vaccines stable, food fresh, and economies productive.37 
 
 

Box 1.1: Efficient Cooling Contributes to Sustainable Development Goals 
 

Increasing access to efficient cooling that uses low-GWP refrigerants will 
contribute to most of the 17 Sustainable Development Goals (SDG).38 For 
example, sustainable cold chains will be essential for increasing incomes for 
farmers and fishers (SDG1) through expanding access to markets and minimising 
post-harvest loss. Cold chains also will be critical to helping end hunger and 
malnutrition (SDG2). Un-broken cold chains that deliver universal access to 
vaccines and medicines are necessary to ensure healthy lives and promote well-
being (SDG3).  
 
Managing thermal comfort and minimising populations’ exposure to heat stress 
will be necessary if cities are to be safe, resilient, and sustainable (SDG11). Access 
to affordable, sustainable modern energy (SDG7) for all could be at risk by the 
significant additional pressure put on energy infrastructure by the growing demand 
for cooling services. Climate targets also would be at risk (SDG13). 

 
 
At the same time as the world is getting hotter, it also is adding more people, with the population 
rising by 40% to 9.8 billion by 2050. Billions more will enter the middle-class,39 with rising 
incomes that will allow them to buy air conditioners and other cooling equipment. With the 
growing population, global crop production, measured in calories, will need to increase by more 
than half by 2050 over 2010 levels.40 This will require more refrigeration to build the “cold chains” 
needed to keep food fresh from farm and lake or sea to table with less loss and waste. Today one-
third of food produced for human consumption is lost or wasted—about 1.3 billion tons per 
year41—with associated financial losses of almost $1 trillion annually.42 This food loss and waste 
contributes 4.4 GtCO2e per year to climate emissions,43 representing 8 to 10% of the total 
anthropogenic emissions from 2010–2016.44 If food waste were a country, it would rank as the 
third largest emitter of greenhouse gas emissions behind only the U.S. and China.45 
 
Access to cooling has thus been termed a fundamental issue of equity and essential for 
development.46 High temperatures jeopardize food supplies and medicines, limit rural farmer and 
fisher access to urban markets, and in multiple ways contribute to poverty. Access to efficient 
cooling will thus be essential for meeting the 17 Sustainable Development Goals (see Box 1.1). 
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The growing risk of heat stress47 calls for faster and more ambitious mitigation to slow the 
accelerating rate of warming and reduce the harm from heat and other impacts. It also calls for 
stronger adaptation measures, including more cooling—both air conditioning and refrigeration—
to reduce heat-related illness and death and ensure continuing productivity.48 For the large 
population likely to remain without access to air conditioning and refrigeration, heat action plans 
and similar efforts to provide warning of extreme temperatures and emergency shelter can reduce 
mortality and health effects.49 
 
1.2 Cooling as Double Edged Sword: Needed for Adaption but Adds to Warming.  
 
Cooling is essential for adapting to a warming world, but risks causing additional warming from 
emissions of high-GWP HFC refrigerants and from CO2 and black carbon emissions from 
inefficient cooling equipment.  
   
 

Box 1.2: Carbon Budget for 1.5°C 

“Excluding such feedbacks [like permafrost thaw], the assessed range for the 
remaining carbon budget is estimated to be 840, 580, and 420 GtCO2 for the 33rd, 
50th and, 67th percentile of TCRE [the temperature response to CO2], respectively, 
with a median non-CO2 warming contribution and starting from 1 January 2018 
onward. Consistent with the approach used in the IPCC Fifth Assessment Report 
(IPCC, 2013b), the latter estimates use global near-surface air temperatures both 
over the ocean and over land to estimate global surface temperature change since 
pre-industrial. The global warming from the pre-industrial period until the 2006–
2015 reference period is estimated to amount to 0.97°C with an uncertainty range 
of about ±0.1°C….”50 

   
   
Without policies to improve energy efficiency and otherwise reduce cooling demand, the projected 
growth in stationary air conditioning and refrigeration could result in energy-related climate 
emissions of 230–430 GtCO2 for 2020–2050,51 representing over seven years of global energy-
related CO2 emissions (7 to 13 years) at 2018 levels.52 This does not include mobile air 
conditioning, where energy use is expected to nearly triple by 2050 as more people purchase 
vehicles equipped with AC.53 Absent the Kigali Amendment, cumulative emissions for HFCs 
through 2050 would add the equivalent of an additional 78 to 90 GtCO2e for all cooling sectors, 
including mobile AC, and an additional 216 to 350 GtCO2e through 2100 (see Chapter 2). To put 
this in perspective, as of 1 January 2018 the carbon budget for scenarios with a 67% probability 
of staying below 1.5°C would limit future emissions to 420 GtCO254 (see Box 1.2). Thus, a 
continuation of current trends in the growth of air conditioning and refrigeration over the next 
three decades could exceed the entire carbon budget required to achieve the 1.5°C Paris target. 
 
1.3 The Refrigerant Threat: Addressed by Successful Environmental Treaty.  
 
Air conditioners and other cooling equipment use refrigerants to remove the heat to the outside 
environment. Chlorofluorocarbons (CFCs) were among the early refrigerants, but they destroyed 
stratospheric ozone and warmed the planet. The threat that CFCs posed to the stratospheric ozone 
layer was identified in 1974 by Mario Molina and F. Sherwood Rowland,55 who shared the Nobel 
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Prize in chemistry for this discovery in 1995. The evidence they presented56 propelled early action 
by consumers to boycott products using these chemicals, followed by national and regional 
restrictions. The parallel threat to the Earth’s climate system from CFCs and related fluorinated-
gases was identified in 1975 by Veerabhadran Ramanathan.57 
 
Building on these scientific discoveries, the Vienna Convention for the Protection of the Ozone 
Layer was approved in 1985, followed by the adoption of the Montreal Protocol in 1987 to 
gradually eliminate the production and consumption of CFCs and other ozone-depleting 
substances (ODS). All member countries of the UN are party to the Montreal Protocol, and their 
early and fast action to ban CFCs and other ODS put the stratospheric ozone layer on the path to 
recovery by mid-century.58 The Montreal Protocol’s widely acknowledged success59 is based on 
a strong foundation of science,60 a focus on identifying technically effective and economically 
efficient substitutes, and a dedicated funding mechanism, the Multilateral Fund for the 
Implementation of the Montreal Protocol (MLF). The MLF pays the “agreed incremental costs” 
for the developing-country Parties to help them meet their obligations under the treaty61 and 
provided $3.89 billion in support between 1990 and 2018.62 The Montreal Protocol is known as a 
“start and strengthen” treaty, based on its five amendments that added new control measures as 
well as the MLF (replenished ten times), and six adjustments that shortened initial phaseout 
schedules. 
 
 

Box 1.3: Importance of Montreal Protocol in Protecting Climate 

“[W]ithout the early warning of the effects of CFCs..., estimated ODS emissions 
would have reached 24–76 GtCO2e·yr−1 in 2010. Thus, in the current decade, in a 
world without ODS restrictions, annual ODS emissions using only the GWP metric 
could be as important for climate forcing as those of CO2… indicating that global 
warming over the next few decades could have been doubled in the absence of the 
Montreal Protocol.” 
Velders, G.J.M., Andersen, S.O., Daniel, J.S., Fahey, D.W., and McFarland, M. (2007). 
The importance of the Montreal Protocol in protecting climate, Proceedings of the National 
Academy of Sciences 104, 4814–4819. 

 
 
1.4 The Montreal Protocol: Past and Future Contribution to Avoid Warming.  
 
At the same time the Montreal Protocol was protecting the stratospheric ozone layer, its fast action 
to ban CFCs and other ODSs reduced climate emissions by the equivalent of 188 to 222 GtCO2e.63 
When combined with earlier consumer boycotts and national and regional measures, the early 
action to eliminate CFCs not only solved the first great threat to the global atmosphere, it also 
reduced climate emissions that otherwise would have equalled today’s emissions of CO2. This 
would have doubled global warming over the next few decades.64 
 
The Kigali Amendment was adopted on 15 October 2016 as the fifth amendment to the Montreal 
Protocol. It requires countries to phase down HFCs, beginning in 2019 for developed countries, 
and for most developing countries five years later.iii HFCs, which do not destroy stratospheric 
                                                 
iii For the complete HFCs phasedown schedule see UNEP Fact sheet of Kigali Amendment.  

https://www.pnas.org/content/104/12/4814
http://multimedia.3m.com/mws/media/1365924O/unep-fact-sheet-kigali-amendment-to-mp.pdf
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ozone but are potent climate pollutants, are alternatives to CFCs and to the HCFCs that replaced 
CFCs, both of which are ODSs as well as powerful climate pollutants. Absent intervention, rising 
annual HFC emissions were projected to contribute warming equivalent to about 20% of CO2 
emissions in 2050.65 
 
 

Box 1.4: Kigali Amendment 

The Kigali Amendment entered into force on 1 January 2019, and its initial 
schedule will achieve over an 80% reduction in HFC consumption by 2047. As 
with previous refrigerant transitions, the Montreal Protocol is playing the dominant 
role in driving a transparent and organized global market transition away from 
HFCs through a stepwise phasedown. Most developed countries begin in 2019, 
whereas a majority of developing countries will freeze consumption and 
production in 2024 and begin the phasedown five years later. Developing countries 
susceptible to high ambient temperatures will freeze at 2028 and begin to phase 
down in 2032.66 

 
   
The initial phasedown schedule of the Kigali Amendment will cut annual emissions of HFCs by 
2.8–4.1 GtCO2e by 2050 and 5.6–8.7 GtCO2e by 210067 (see Figure 1.1). This will reduce warming 
to 0.06°C, from a baseline of 0.3°C to 0.5°C of warming at 2100; if the global production of HFCs 
were to cease in 2020, their contribution to surface temperature would stay below 0.02ºC for the 
whole 21st century.68 
 
1.5 Maximizing Climate Benefits of Kigali Amendment: Synchronizing Improvements in  

Energy Efficiency of Cooling Equipment with Mandated HFC Phasedown.  
 
Immediately after the Kigali Amendment was agreed, the negotiators from Rwanda and Morocco 
introduced a decision to consider opportunities to increase the energy efficiency of cooling 
equipment during the phasedown of HFCs.69 The Parties adopted this decision and others since to 
underline the importance of addressing energy efficiency in the cooling sector while phasing down 
HFCs. Indeed, as of 2017, approximately 80% of the climate impact of cooling equipment was 
from the indirect emissions (CO2 and black carbon emissions from fossil fuel electricity 
generation) and 20% was from the direct emissions of the refrigerants.70 
 
Previous transitions under the Montreal Protocol have catalysed improvements in the energy 
efficiency of cooling equipment.71 Now, however, energy efficiency is an explicit focus in the 
discussions of the Parties and received an additional boost from an $80 million fast-start fund 
created by governments and private philanthropists in the runup to the final negotiations on the 
Kigali Amendment.72 This has given additional impetus to the more traditional policies for 
improving energy efficiency of cooling equipment, including labels and regulations setting 
minimum energy performance standards, or MEPS, which in many countries are traditionally done 
every few years.73 Another fast start strategy is using the bulk purchasing power of governments 
to buy super-efficient cooling equipment at a lower cost. India’s bulk procurement program was 
able to improve room AC efficiency by 40% compared to average units at comparable cost.74 For 
countries that do not have domestic manufacturers of cooling equipment, policies to slow or 
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prevent import of inefficient products may be utilized and may be eligible for support from climate 
funds.75 Registration of exporters and importers, pre-shipment verification of conformity, and 
prohibitions and taxes on imports are examples of policies that can meet this objective.76 These 
and other policies are reviewed in Chapter 4. 

Countries that prepare national cooling action plans, as India, China, and Rwanda have done, have 
the opportunity to consider a diverse range of opportunities to promote efficient cooling using low-
GWP refrigerants. Cooling action plans provide a means to address local needs and to engage a 
range of relevant stakeholders from energy, agriculture and health, the private sector, and civil 
society. Twenty-five other countries have cooling action plans underway. The mitigation strategies 
in these plans can, in turn, be incorporated into enhanced National Determined Contributions to 
support the Paris Agreement and potentially warrant additional financial support.77 

With the launch of the heads of state Biarritz Pledge for Fast Action on Efficient Cooling at the 
G7 Summit in August 2019, the significance of the cooling challenge was embraced for the first 
time at the highest level of government78 (the Biarritz Pledge is included in full in Chapter 4). The 
focus on efficient cooling at the Secretary General Climate Action Summit in September 2019 
further reinforced the importance of this mitigation opportunity.79 

Figure 1.1: HFC emissions and the contribution of HFCs to the global average surface warming of Earth with 
and without the Kigali Amendment. The scenarios without the measures are based on Xu et al. (2013) and Velders 
et al. (2015) which differ in their assumptions for the projections of the demand for HFCs past 2050. Also shown is a 
hypothetical scenario assuming that the global production of HFCs would cease in 2020. The surface temperature 
change based on Velders et al. (2015) is calculated using the MAGICC6 model. For comparison, the total warming 
from all greenhouse gases is projected to be 1.4–4.8°C by the end of the 21st century following the RCP6.0 and 
RCP8.5 scenarios (Collins et al., 2013). The contribution from HFC-23 is not included here.80 The emissions shown 
here are based on the GWPs used in Velders et al. (2015), which differ somewhat from those in Table 2-1; the 
difference in CO2e emissions is less than 1%. (Montzka, S.A. and Velders, G.J.M. (Lead Authors), Krummel, 
P.B., Mühle, J., Orkin, V.L., Park, S., Shah, N., and Walter-Terrinoni, H. (2018). Hydrofluorocarbons (HFCs), 
Chapter 2 in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–
Report No. 58. World Meteorological Organization, Geneva, Switzerland. 2.41, Figure 2-20.) 

https://www.esrl.noaa.gov/csd/assessments/ozone/2018/
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CHAPTER 2: HFC EMISSIONS FROM THE COOLING SECTOR – 
CURRENT USES AND FUTURE SCENARIOS 

 

 
Since 1987, the Montreal Protocol has worked to protect the stratospheric ozone layer and the 
climate by phasing out the production and consumption of ozone-depleting substances (ODSs) in 
favour of transitional and long-term substitutes and alternatives that are safer for the ozone layer 
and the climate. ODSs emitted to the atmosphere from refrigeration and air conditioning 
equipment and many other applications led to the release of chlorine and bromine atoms which 
chemically destroy ozone. The phaseout of CFCs led to the introduction of transitional replacement 
compounds including hydrochlorofluorocarbons (HCFCs), which are ODSs but less damaging to 
the ozone layer, and ozone-safe hydrofluorocarbons (HFCs), which contain no chlorine and 
bromine and hence do not deplete stratospheric ozone. Many of these ODSs, as well as some 
substitutes including HCFCs and HFCs, are also powerful greenhouse gases (GHGs). 
 
A team of government and corporate scientists and an environmental economist first alerted the 
Parties to the Montreal Protocol in 2009 to the large growth in HFC emissions expected by 2050 
based on projections of HFC use in the developed and developing world.81 The response of the 
Montreal Protocol after several years of deliberation and more scientific evidence was the adoption 
of the 2016 Kigali Amendment, with an agreed schedule to phase down the production and 
consumption of a subset of HFCs with the highest GWPs in the coming decades.82 
 
Fast implementation of the Kigali Amendment will make a crucial contribution to slowing climate 
change and meeting the goals of the 2015 Paris Agreement. According to UNEP's Emissions Gap 
Report, current national policies and mitigation pledges in Nationally Determined Contributions 
(NDCs) are not yet sufficient to limit global warming to the warming goal of the Paris 
Agreement.83 Moreover, as discussed in Chapters 3 and 4, there is potential beyond the Kigali 
Amendment provisions to reduce cooling-related climate emissions more rapidly through 
improvements in energy efficiency and careful management of banks of HFCs in equipment, 
especially during product service and end of life recycling or disposal. 
 
The role of HFCs in the past, present and future atmosphere is a chapter topic in the 2018 Scientific 
Assessment of Ozone Depletion84, produced by the SAP under the auspices of the World 
Meteorological Organization (WMO) and UNEP. Assessment reports from the Technology and 
Economic Assessment Panel (TEAP) of the Montreal Protocol address the technical and economic 
feasibility of the HFC phasedown in manufacturing, service, and recycling or destruction at end of 
product life. Findings of the SAP and TEAP assessment reports, as well as other studies, are 
summarized below.  
 
2.1 HFC Uses. 
 
The vast majority of HFC consumption is in the cooling sector comprising of refrigeration, air 
conditioning, and heat pumps (RACHP) in both mobile and stationary applications. These sectors 
accounted for 86% of the GWP-weighted share of global HFC consumption in 2012.85 More than 
half of total HFC consumption for RACHP comes from emissions caused during service of 
installed equipment.86 An estimated 65% of GWP-weighted consumption comes from air 
conditioning (with mobile air conditioning accounting for 36% and the balance for stationary AC 
and heat pumps) and 35% from refrigeration, as shown in Figure 2.1.87 Another large and growing 
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use of HFCs is in the mobile air conditioning (MAC) sector. MAC-related HFC emissions were 
estimated to account for just over 170 million tonnes of CO2e emissions in 2013, or about one-
third of GWP-weighted global HFC emissions.88 These emissions are expected to continue to grow 
beyond 2020 given rapid growth in automobile ownership in India, China, Brazil, and other 
developing countries where vehicles continue to use HFC-134a and high temperatures are 
common. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Global HFC use as share of total on GWP-weighted basis for stationary and mobile refrigeration, 
air conditioning, and heat pump sectors in 2012. The majority of HFC use was for topping up leaks. GWP weighting 
is based on IPCC AR4 values. (United Nations Environment Programme (2015). UNEP Ozone Secretariat Workshop 
on HFC Management: Technical Issues, Fact Sheet 2: Overview of HFC Market Sectors. Bangkok, Thailand.) 
 
Assuming that cooling sectors continue to account for 86% of the GWP-weighted share of global 
HFC consumption, absent policy, the cumulative direct emissions from these sectors through 2050 
could have reached 78 to 90 GtCO2e, and as much as 216 to 350 GtCO2e through 2100 (see Table 
2.2). 

The global RACHP market relies on approximately 16 HFCs (pure) and 30 HFC blends, with 
GWPs ranging from under 100 to close to 15,000, with a weighted GWP average of 2,20089 (see 
Table 2.1 for GWP values). HFC-134a is the most widely used high-GWP HFC refrigerant.90 The 
majority of the low-GWP alternative refrigerants are low toxicity and either mildly flammable 
(A2L), flammable (A2), or highly flammable (A3), while some low-GWP hydrofluoroolefins 
(HFOs) are low-toxicity and do not show flame propagation (A1) according to the American 
Society of Heating, Refrigerating and Air-Conditioning Engineers.91 Safety standards for 
refrigerants are in the process of being updated, with anticipated adoption by the International 
Organisation for Standardization and other relevant authorities.92 Safe use of these refrigerants 
requires both manufacturing facilities that are appropriately equipped to produce flammable and/or 
high-pressure systems and a disciplined workforce trained in proper installation and servicing and 
equipped with specialized tools for leak detection and repair.93 More details on various 

http://conf.montreal-protocol.org/meeting/workshops/hfc_management-02/presession/English/FS%202%20Overview%20of%20HFC%20Markets%20final.pdf
http://conf.montreal-protocol.org/meeting/workshops/hfc_management-02/presession/English/FS%202%20Overview%20of%20HFC%20Markets%20final.pdf
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refrigerants, including GWP and their safety classifications, can be found in UNEP Refrigeration 
Technical Options Committee Report.94 

 
Substance / Industrial designation 
or chemical name 

GWP-100 
(WMO 
2018) 

GWP-100 
(WMO 
2014) 

GWP-100 
(IPCC 
AR5) 

GWP-100 
(IPCC 
AR4) 

Controlled 
substances* 

Hydrocarbons          

HC-290 (propane) <1 NA NA NA  

HC-600a (isobutane) <<1 NA NA NA  

HC-1270 (propylene) <<1 NA NA NA  

Hydrochlorofluorocarbons         Annex C 
HCFC-22 1780 1760 1760 1810 1810 

HCFC-123 80 79 79 77 77 

Hydrofluorocarbons         Annex F 
HFC-23** 12690 12400 12400 14800 14800 

HFC-32 704 677 677 675 675 

HFC-125 3450 3170 3170 3500 3500 

HFC-134a*** 1360 1300 1300 1430 1430 

HFC-143a 5080 4800 4800 4470 4470 

HFC-152a 148 138 138 124 124 

Unsaturated Hydrofluorocarbons          

HFO-1234yf <1 <1 NA NA  

HFO-1234ze(E) <1 <1 NA NA  

HFO-1224yd(Z) NA NA NA NA  

HFO-1336mzz(Z) 2 2 NA NA  

HFO-1233zd(E)  1 NA NA NA  

Inorganic compounds          

R-744 (carbon dioxide) 1 1 1 1  

R-717 (ammonia) <1 NA NA NA  

R-718 (water)**** NA NA NA NA  

Table 2.1: Global warming potentials for 100-year time horizons (GWP-100). For a subset of substances used as 
refrigerants either as pure substances or in blends in the cooling sector, or as a by-product of HCFC-22 production in 
the case of HFC-23. The WMO 2018 values are updated with the most recent analysis. Some GWPs in the table may 
differ from the official metrics for controlled substances reported in the Montreal Protocol Handbook (Handbook, 
2018) due to consideration of recent experimental data, methods of analysis, and/or assessment recommendations. 
The GWP values listed in Annex F must be used for the conversion of HFC mass quantities to carbon dioxide 
equivalents (CO2e) in all the reporting that countries will need to submit in relation to the implementation of the HFC 
control schedules. 

* Substances controlled under the Montreal Protocol Annex C (Montreal Protocol on Substances that Deplete the 
Ozone Layer (1987), Annex C, entered into force 16 September 1989) and Annex F (Montreal Protocol on 
Substances that Deplete the Ozone Layer (1987), Annex F, entered into force 1 January 2019). 
** HFC-23 is a by-product of HCFC-22 production; it is not a refrigerant. 
*** HFC-134a is obsolete in all applications with technically and environmentally superior alternatives 

commercialized and near commercialized. 
**** Water has limited potential as a primary refrigerant. 
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In well over half of RACHP applications, energy-efficient lower-GWP alternatives from among 
those listed in Table 2.1 are fully mature and commercialized and have an increasing market 
share.95 These include: 

• HC-600a (isobutane) in domestic refrigerators  

• HC-290 (propane) in room air conditioners and stand-alone display cases 

• HFC-32 (reduced charge) in room air conditioners 

• R-744 (CO2) in supermarket refrigeration 

• R-717 (ammonia) in industrial refrigeration 

• HFO-1234yf and HFC-152a (smaller charge, less leakage, higher energy efficiency) in 
motor vehicle air conditioning  

• HFOs in large chillers 
 
2.2 The Kigali Amendment will limit warming from HFCs from a baseline of 0.3–0.5°C 

to 0.06°C by 2100, and halting HFC production in 2020 would keep the HFC warming 
below 0.02ºC for the whole 21st century. 

 
Emissions scenarios. In order to evaluate the likely contribution of HFC emissions to radiative 
forcing, experts prepare scenarios for future emissions based on assumptions about the growth in 
populations and income as well as the impact of rising temperatures. This begins with an 
assessment of current emissions. Before 2013, developed countries accounted for the majority of 
HFC emissions (excluding HFC-23) on a CO2-equivalent basis.96 Developed countries reporting 
HFC emissions to the UNFCCC accounted for about 50% of the total global emissions estimated 
from observations for the period 2007–2012.97 While incomplete reporting adds uncertainty to 
consumption statistics, reporting in 2015 and atmospheric measurements suggest that developing 
countries are currently responsible for about half of HFC emissions associated with ODS 
replacement (i.e., excluding HFC-23). The share of HFC emissions likely coming from developing 
countries increases when HFC-23 is considered.98 Without the Kigali Amendment, Velders et al. 
(2015) projected that China would be the largest emitter of HFCs by 2020 and would account for 
31% of HFCs emissions by 2050, while the United States' contribution to global emissions would 
account for 10% by 2050.99 
 
HFC emissions in 2016, not including HFC-23,iv accounted for 0.025 W/m2 of forcing and were 
projected to increase ten-fold to 0.25 W/m2 by 2050.100 Compared to baseline scenarios without 
                                                 
iv HFC-23 (GWP100 12,690, lifetime 228 years) is considered separately in the Kigali Amendment and in the 
Quadrennial Ozone Assessment (WMO, 2018), primarily because it is emitted to the atmosphere as a by-product of 
HCFC-22 production. In the absence of intentional production that can be phased out, the Kigali Amendment instead 
requires destruction of HFC-23 “to the extent practicable” starting in 2020, in order to limit future emissions and 
associated global warming. See Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer, 
Art. 2J, ¶¶ 1–4, 6–7, 15 Oct. 2016, C.N.872.2016.TREATIES-XXVII.2.f U.N.T.S. 2 (“Each country manufacturing 
HCFC-22 or HFCs shall ensure that starting in 2020 the emissions of HFC-23 generated in production facilities are 
destroyed to the extent practicable using technology approved by the Montreal Protocol”); Kigali Amendment, Art. 
3, ¶ 1(d), 15 Oct. 2016, C.N.872.2016.TREATIES-XXVII.2.f U.N.T.S. 2, at 4. See also UNEP, Exec. Comm. of the 
Multilateral Fund for the Implementation of the Montreal Protocol, Seventy-eighth Meeting, Montreal, 4–7 April 
2017: Key Aspects Related to HFC-23 By-Product Control Technologies, U.N. Doc. UNEP/OzL.Pro/ExCom/78/9 (7 
Apr. 2017) (requiring that Parties determine and calculate their HFC-23 emissions and provide the Secretariat with 
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controls on HFCs, the Kigali Amendment reduces future radiative forcing by 50% in 2050, with 
an estimated climate benefit of avoiding 2.8–4.1 GtCO2e/yr by 2050 and 5.6–8.7 GtCO2e/yr by 
2100.101 The ranges reflect the high and low baseline scenarios. 
 
The mitigation of HFC-23, which is primarily a by-product of producing HCFC-22, is not included 
in these calculations, although HFC-23 represents 17% of forcing from HFCs in 2016,102 has the 
longest lifetime and highest GWP, and accounted for the second largest radiative forcing of all 
individual HFCs and other F-gases.103 With implementation of the provisions of the Kigali 
Amendment, future HFC-23 emissions are expected to be limited significantly.104 

Table 2.2: Cumulative emissions of HFCs in terms of GWP-weighted CO2e using WMO 2014 GWP-100 values. 
Values are adapted from Figure 1.2 (Figure 2-20 in WMO 2018). The range in the reference case is based on the high 
and low scenarios of Velders et al. (2015)105 adjusted to align with observed HFC emissions through 2012. Policy 
scenarios included implementation of the Kigali Amendment phasedown schedule and a hypothetical scenario 
assuming a complete phaseout of global production of HFCs in 2020 and thus avoided build-up of HFC banks 
embedded in products and equipment. Note that HFC consumption values would be higher than the HFC emissions 
shown as emissions lag consumption (see Velders et al. 2015, Tables S5 and S6). *Cumulative emissions for 
refrigeration, air conditioning, and heat pump (RACHP) sector estimated assuming a constant 86% of total GWP-
weighted share of global HFC consumption (UNEP 2015),106 largely consistent with the 88% to 93% range in 2016 
and 2066 in Velders et al. (2015). HFC-23 is not included for reasons discussed above. 
 
Based on summing annual emissions in the baseline scenarios, HFCs and other fluorinated gases 
add 91–105 GtCO2e by 2050 and another 251–407 GtCO2e by 2100 (see Table 2.2; cumulative 
emission obtained from Figure 1.2), not including indirect emissions from energy production. Full 
implementation of the Montreal Protocol and its amendments and enabling national and regional 
policies (such as the EU F-gas rule) will result in avoided cumulative GWP-weighted consumption 
of 61–88 GtCO2e through 2050 and avoided emissions of 33–47 GtCO2e from all sectors by 2050, 
along with another avoided cumulative emissions of 215–371 GtCO2e over 2051–2100 (see Table 
2.2). 
                                                 
statistical data of their emissions per facility, including amounts emitted from equipment leaks, process vents, and 
destruction devices, but excluding amounts captured for use, destruction or storage); and UNEP, Rep. of the Twenty-
Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, U.N. Doc. 
UNEP/OzL.Pro.28/12 (15 Oct. 2016) (providing guidance to the MLF Executive Committee with respect to the 
consumption, production and servicing sectors and identifying HFC-23 as an HCFC-22 production-process by-
product). 

Scenario Reference Kigali Amendment HFC phaseout in 2020 
Period 2016–2050 2051–2100 2016–2050 2051–2100 2016–2050 2051–2100 

Reference or Residual 
Cumulative Emissions 

(GtCO2e ALL SECTORS) 
91–105 251–407 58 36 13 1.1 

Cumulative Avoided 
Emissions (GtCO2e ALL 

SECTORS) 
-- -- 33–47 215–371 78–92 250–406 

Reference or Residual 
Cumulative Emissions 

(GtCO2e RACHP*) 
78–90 216–350 50 31 11 1.0 

Cumulative Avoided 
Emissions Compared to 

Reference (GtCO2e RACHP*) 
-- -- 28–40 185–319 67–79 215–349 
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Climate response to HFC emissions. Under the provisions of the Kigali Amendment, the 
contribution of HFCs to the global average surface temperature is projected to reach a maximum 
around 2060, after which it slowly decreases to about 0.06°C by 2100 (see Figure 1.2). In contrast, 
the surface temperature contribution from HFCs in the baseline scenario is 0.3–0.5°C in 2100.107 
The HFC mitigation is substantial in the context of the goal of the Paris Agreement to limit 
warming to no more than 2°C above pre-industrial levels, aiming for no more than 1.5°C.108 

Figure 2.2: Climate-relevant impacts of alternative future scenarios compared with the baseline scenario. The 
climate-relevant metric is chosen to be the integrated GWP-weighted emission from 2020 to 2060. An increase in 
GWP-weighted emissions occur when future emissions are higher than in the baseline scenario for the compounds 
considered. A complete elimination of the production of high-GWP HFCs starting in 2020, and their substitution with 
low-GWP alternatives, would avoid an estimated cumulative 53 GtCO2e emission during 2020–2060. (Carpenter, L.J. 
and Daniel, J.S. (Lead Authors), Fleming, E.L., Hanaoka, T., Hu, J., Ravishankara, A.R., Ross, M.N., Tilmes, S., 
Wallington, T. J., Wuebbles, D. J. (2018). Scenarios and Information for Policymakers, Chapter 6 in Scientific 
Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, World 
Meteorological Organization, Geneva, Switzerland. 6.6, Figure 6-1.). 

Additional warming could be avoided from a faster HFC phasedown schedule, which would be 
consistent with the “start and strengthen” history of past amendments and adjustments accelerating 
emission reduction schedules.109 This could be achieved with a more extensive replacement of 
high-GWP HFCs with commercially available low-GWP alternatives in refrigeration and air 
conditioning.110 GHG emissions can also be reduced by collecting ODSs and HFCs at the end of 
the useful life of products and equipment and either recycling or destroying them (see Chapter 3). 
If global production of HFCs were to cease by 2020, the surface temperature contribution of the 
HFC emissions would stay below 0.02°C for the whole 21st century.111 A complete elimination of 
production of HFCs starting in 2020, and their substitution with low-GWP alternatives, would 
avoid an estimated cumulative 53 GtCO2e emission during 2020–2060 in addition to the reductions 
expected from the Kigali Amendment (see Figure 2.2).112 

Metrics for evaluating contributions to climate change. The contribution of HFC use to present 
and future climate change involves both direct and indirect components. The direct contribution 
includes the release of refrigerant into the atmosphere during the lifetime of the system. The 

https://www.esrl.noaa.gov/csd/assessments/ozone/2018/
https://www.esrl.noaa.gov/csd/assessments/ozone/2018/
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indirect contribution includes emissions from the manufacturing process, energy consumption, and 
disposal of the system. When choosing an HFC refrigerant for a specific application, four metrics 
for evaluating the overall climate contribution are:  

• CO2-equivalent emissions using the GWP and the emissions of the refrigerant;  

• Total Equivalent Warming Index (TEWI) integrating energy and refrigerant climate 
forcing but ignoring embodied emissions during manufacturing; 

• Life Cycle Climate Performance (LCCP) integrating energy, refrigerant, and embodied 
climate forcing; and 

• Enhanced and Localized Life Cycle Climate Performance (EL-LCCP) integrating 
hour-by-hour electricity carbon intensity and actual local ambient temperatures 
including urban heat island effects.113  

 
Currently, LCCP is a better-established tool than either TEWI or EL-LCCP.114 Using these metrics 
for current and future applications of HFCs can minimize the future direct and indirect 
contributions from these sectors to climate change.  
 
Conservative assumptions underlying both HFC growth and mitigation opportunities. The 
assumptions underlying the Velders et al. (2015) study used to develop baseline scenarios are 
likely conservative and understate the full mitigation potential of the Kigali Amendment for two 
reasons. First, the scenarios do not consider the potentially higher future demand for air 
conditioning as a result of the increased temperatures caused by climate change in all countries, as 
well as the effect on demand of urban heat islands—an increasing concern as the share of the 
global population in urban areas is projected to reach nearly 70% by 2050.115 Secondly, the 
scenarios also do not consider the fact that many developing countries have higher ambient 
temperatures than the developed countries and could, therefore, have a higher demand for 
stationary AC and higher emissions per capita.116 
 
Underestimation of climate benefits from reduced HFC emissions may also exist in other recent 
studies. The HFC emissions in 2050 in Velders et al. (2015) are similar to those in UNEP (2014) 
and slightly higher than projected in other scenarios (such as Gschrey et al., 2011; Purohit and 
Höglund-Isaksson, 2017; Höglund-Isaksson et al., 2017).117 Assumptions regarding constrained 
future growth in demand in developing countries due to early saturation in Velders et al. (2015) 
resulted in lower emissions projections than in Velders et al. (2009).118 Higher projections of 
population and the number of households would delay market saturation and increase Velders et 
al. (2015) estimates of the HFC emissions in 2050. Velders et al. 2009 may also be the only study 
to evaluate a future in which “Cooling for All” objectives (see Box 3.1) are achieved, further 
adding to demand. This study assumes that developing countries achieve per capita HFC 
consumption levels similar to developed countries by circa 2040 in the high end of the scenario 
range, an approach that presumes countries have enough electricity and robust grids to support the 
increased demand.119 As a consequence, derived climate benefits from an HFC phaseout as 
reported in the SAP assessment are likely underestimates. Yet another factor, likely a source of 
underestimates, is that generation of electricity at peak times tends to be associated with lower 
efficiency and greater emissions (see Chapter 3). 
 
Furthermore, none of these studies consider the much greater opportunity to reduce indirect GHG 
emissions associated with energy production by improving the energy efficiency of cooling 
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equipment alongside the HFC phasedown (see Chapter 3). The Energy Efficiency Task Force of 
the Montreal Protocol’s Technology and Economic Assessment Panel found that for most cooling 
sector applications, “[t]he largest potential for EE improvement comes from improvements in total 
system design and components, which can yield efficiency improvements (compared to a baseline 
design) that can range from 10% to 70% (for a “best in class” unit). On the other hand, the impact 
of refrigerant choice on the energy efficiency of the units is usually relatively small—typically 
ranging from +/- 5 to 10%.”120 
 
Phasing down HFCs under the Kigali Amendment can leverage parallel strategies to improve the 
energy efficiency of cooling equipment, with the potential to more than double the climate benefits 
of the HFC phasedown alone. Chapter 3 discusses energy efficiency opportunities in detail. 
Chapter 4 addresses opportunities to promote coordinated strategies through national cooling 
action plans and other policies.  
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CHAPTER 3: ENERGY-RELATED EMISSIONS FROM THE COOLING SECTOR  
AND OPPORTUNITIES FOR MITIGATION 

 

 
Energy demand for air conditioning and refrigeration in buildings, commerce, industry, and 
vehicles is growing rapidly. Global energy demand for air conditioning in buildings more than 
tripled between 1990 and 2016 from about 600 billion kilowatt hours (TWh) to 2,000 TWh,121 
which is equivalent to the total electricity consumed in Japan and India in 2016.122 In China alone, 
demand grew by 68-fold between 1990 and 2016,123 which accounted for more than 10% of 
electricity growth in China since 2010 and around 16% of its peak electricity load in 2017.124 
While energy demand for cooling is projected to triple by 2050, these estimates likely 
underestimate cooling demand that would be needed to meet the SDGs, as space cooling and 
refrigeration needs for agricultural cold chains, health, and other development needs are 
significantly underestimated in current income-based projections.125 
 
Continued reliance on fossil fuel energy sources means that climate emissions from both CO2 and 
black carbon associated with cooling energy use are also continuing to increase. The growing 
demand for cooling also stresses electricity grids by contributing up to fifty percent or more to 
peak electricity demand.  
 
If today’s best available technologies—for both efficient equipment and climate-friendly 
refrigerants—were adopted for stationary air conditioning and refrigeration equipment in 2030, it 
would be possible to avoid the equivalent of up to 210–460 billion tons of CO2e (GtCO2e) over 
the next three decades compared to current technologies. Significant additional emissions 
reductions are available from the use of more efficient mobile air conditioning that uses low-GWP 
refrigerants. Improving access to energy-efficient and climate-friendly refrigeration through 
enhanced cold chains would deliver still more economic, environmental, and health benefits 
through reduced food loss and waste.  
 
Many technologies and strategies are available today that can significantly reduce climate 
emissions from the cooling sector while meeting growing cooling needs. These include improved 
building design, maintenance, and operation to reduce the need for cooling in the first instance. 
Best available technologies can double and even triple the average energy efficiency of many 
cooling applications. Promoting “part time” and “part space” behaviours in which households cool 
rooms only when occupied is another approach to reducing power demands. Measures to reduce 
urban heat islands, such as tree planting and cool roofs and pavement, can further reduce cooling 
needs, while also addressing equity, as lower income neighbourhoods tend to disproportionately 
experience elevated heat exposure.126  
 
3.1 Demand for cooling is growing as population, urbanization, and wealth grow, and as 

global warming accelerates. 
 
In 2018 the global stock of equipment for air conditioning, refrigeration, and mobile cooling was 
projected to consume 3.4% of the world’s total final energy demand.127 Energy demand for space 
cooling accounts for the largest share of cooling energy consumption at about 2000 billion kilowatt 
hours (TWh) and is projected to triple by 2050.128 Energy demand for residential air conditioning 
is projected to exceed demand for heating by 2070, and increase 40-fold by 2100 relative to 2000 
levels.129 
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This growing demand for cooling is causing increasing climate emissions, contributing to the 
historic high in global energy-related CO2 emissions in 2018.130 Reducing climate emissions from 
the cooling sector while meeting cooling needs will require solutions that deliver cooling using 
less energy, i.e., more efficiently. This is especially important as global energy-related CO2 
emissions may not peak before 2040 due to continued dependence on fossil fuels for energy,131 
driven in considerable part by the growing power demand for cooling that is still using current 
less-efficient technologies, in spite of the growing realization that net zero emissions must be 
achieved by 2050.132  
 

 
Figure 3.1: Cooling capacity projections for residential and commercial air conditioning in baseline scenario 
of IEA Future of Cooling (2018). Note that global electricity generation capacity in 2016 was about 6,690 GW.133 
 
Moreover, demand for space cooling may grow even faster than expected. The projected growth 
in residential and commercial space cooling capacity from 11,670 GW in 2016 to over 36,500 GW 
in 2050 (see Figure 3.1) will still leave substantial cooling needs unmet. Macro-level quantification 
and equipment-based projections likely underestimate the size of the need due to data limitations 
and the potential for unprecedented urban growth and increasingly high temperatures (see Box 
3.1).134 Projections for cooling demand are traditionally based on population, income (based on 
gross domestic product (GDP)), cooling degree days,v and electricity access. Air conditioner 
ownership, in particular, rises very rapidly with income in countries with hot and humid climates, 
where cooling is essential for people to live and work in comfort.135 Demand in India, for example, 
has outpaced annual GDP growth, which has fluctuated between 5 and 8% since 2010,136 while 
production of room air conditioners has been growing at 13% per year since 2010 and is expected 
to continue to grow by 11 to 15% per year over the next 10 years.137 
 
This rapidly growing demand for space cooling also reflects increasing population and wealth, 
urbanization and warming cities. More than half of the world’s population is concentrated in cities, 
                                                 
v Cooling degree days measure how warm a given location is, by summing the degrees that a day’s temperature is 
above a reference temperature (for example, 18°C in Europe). 



Assessment of Climate and Development Benefits of Efficient and Climate-Friendly Cooling 
 

 19 

where the heat island effect makes cooling even more important for adapting to the added heat 
from climate change. By 2050, the UN projects that over two-thirds of the world population will 
live in cities, with much of the growth in China, India, and Nigeria.138 The urban heat island effect, 
due to lighting, traffic, air conditioning, heating, and heat-absorbing surfaces, can make cities 
hotter than the surrounding countryside by 3°C or more on hot summer days and up to 12°C more 
in the evenings.139 Elevated temperatures from urban heat island effects lead to increased energy 
consumption (5 to 10% of urban demand for electricity may be used to compensate for the heat 
island effect140), elevated emissions of air pollutants and greenhouse gases, compromised human 
health and comfort, and impaired water quality.141 
 
3.2 Transitioning to high efficiency cooling can more than double climate benefits of the 

HFC phasedown in near-term, while also delivering economic, health, and 
development benefits.  

 
In addition to the direct climate benefits from HFC mitigation, a parallel focus on energy efficiency 
in refrigerators, air conditioners, and other cooling equipment can greatly enhance the overall 
climate, economic, and health benefits by reducing energy-related emissions in the cooling sector. 
Historically, refrigerant conversions, driven by refrigerant phaseouts under the Montreal Protocol, 
have catalysed significant improvements in the energy efficiency of refrigeration and AC 
systems—up to 60% in some subsectors.142 Lessons learned from past transitions show that 
manufacturers that invested in improving the efficiency of their products as part of the redesign 
for CFC and HCFC transitions benefited from government policies to improve energy efficiency 
of cooling equipment that resulted in reductions in lifecycle costs to consumers, drove high-
volume sales, and even reduced first costs—sometimes substantially.143 Similar improvements are 
expected under an HFC phase-down, and more deliberate government policy efforts can drive even 
greater efficiency improvements. 
 
A number of key studies offer insights into the overall potential enhancements available (see Table 
3.1). 
 
Reducing emissions by maximizing cooling efficiency. According to Lawrence Berkeley National 
Laboratory (LBNL), the world can avoid the equivalent of up to 210–460 billion tons of CO2e 
(GtCO2e) over three decades through efficiency improvements and refrigerant transition. This 
would be possible if, starting in 2030, all stationary air conditioning and refrigeration equipment 
were replaced with the highest-efficiency and climate-friendly refrigerant technologies available 
in 2018. The range accounts for 20% lower and higher growth rate in equipment demand than in 
the reference case, and for the low range, 2% annual reduction in carbon intensity, and for the high 
range, constant emissions factors from electricity generation.144 Three-quarters of the avoided 
emissions are due to energy efficiency—equivalent to an average 40% efficiency improvement— 
and the remaining quarter is from the transition to low-GWP refrigerants. (Note that this scenario 
implies a faster HFC phasedown than the Kigali Amendment phasedown schedule.) However, this 
study does not consider the additional equipment and power needed to meet “cooling for all” (see 
Box 3.1).  
 
Improving the efficiency of stationary air conditioning units alone could avoid significant 
emissions. A previous study by LBNL found that replacing all residential air conditioners in 2030 
with units that consume 30% less electricity could save enough electricity to avoid 680–1,550 
medium-size peak power plants by 2030.145 The Rocky Mountain Institute estimates that 
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cumulative energy-related emissions from residential and small commercial air conditioning could 
be reduced by 45–80 GtCO2 by 2050 through improved energy efficiency (see Table 3.1).146 A 
global innovation competition, the Global Cooling Prize, was launched in 2018 to identify designs 
and technologies that can deliver cooling with five times lower climate impact (for example 
through being four to five times more efficient than current baseline equipment and using low-
GWP refrigerants); eight finalists were announced in November 2019.147 Using a different set of 
assumptions, the IEA calculates that cost-effective policy to double the efficiency of new 
stationary air conditioners would contribute accumulated emissions reductions of approximately 6 
GtCO2 by 2030 and 39 GtCO2 by 2050 in an already decarbonizing electricity system.148 
 
Climate emissions—both CO2 and black carbon—that can be avoided by improving the energy 
efficiency of air conditioning equipment are likely underestimated. Most studies use cooling 
degree days to estimate energy demand for air conditioning, which does not account for urban heat 
islands, nor the stacking and clustering of outdoor units in close proximity to each other to create 
a localized heat island. Emissions savings from improved efficiency to reduce air conditioner 
energy use during peak loads may be underestimated by nearly half as electricity use in these 
periods tends to be more carbon-intensive and power plant efficiency is lower at higher 
temperatures.149  
 
Economic benefits. Inefficient cooling is costly to households, the economy, and public finances. 
In addition to the 680–1,550 medium-size peak power plants LBNL calculates can be avoided by 
2030, the IEA estimates that doubling the energy efficiency of air conditioning by 2050 would 
reduce the need for 1,300 GW of generation capacity, the equivalent of all the coal-fired power 
generation capacity in China and India in 2018. In most countries and regions, the avoided capacity 
will be in the form of avoided carbon-intensive coal and natural gas plants.150 Worldwide, doubling 
the energy efficiency of air conditioners can save up to USD $2.9 trillion (United States dollar) by 
2050 by reducing generation capacity requirements and fuel and operating costs.151 The same study 
found that efficient cooling would almost halve annual electricity costs per capita for space cooling 
in 2050 from around USD $62 to USD $35 averaged across the global population.152 A separate 
case study for the Maghreb region by the World Bank found that improving air conditioner energy 
efficiency would ease the burden on public finances, with additional benefits of avoided 
investment in new power plants, reduction in consumer bills, reduction in national energy bills, 
and impact on the magnitude of public subsidies to the electricity sector.153 Efficiency 
improvements are especially valuable for countries dependent on fuel imports.154 
 
Reducing food loss. Access to cooling can avoid considerable climate emissions from food loss. 
The Food and Agriculture Organization of the United Nations estimates that the carbon footprint 
of food produced and not eaten in 2007 was 3.3 GtCO2e, and is 25 to 40% higher when land use 
related emissions are taken into account,155 with estimates for climate impacts of food loss and 
waste rising to approximately 4.4 GtCO2e annually in 2012—greater than the annual emissions 
from all countries but China and the United States.156 The lack of adequate cold chains is 
responsible for about 9% of lost production of perishable foods in developed countries and 23% 
in developing countries,157 with approximately 1 GtCO2e in 2011 attributable to insufficient cold 
chain.158 Project Drawdown estimates that consumer behaviour change and improved cold chains 
and agricultural practices could reduce total cumulative food loss and waste between 2020 and 
2050 and avoid 93.7 GtCO2e of emissions, including by diverting agricultural production and 
avoiding land conversion under a scenario aligned with the Zero Hunger Challenge.159 The 
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potential impact of improved cold chains could account for 19–21 GtCO2e of avoided emissions 
cumulatively through 2050.160 
 
Benefits for health through improved air quality. Air conditioning and refrigeration equipment can 
substantially impact energy-related air pollution emissions through increased demand for 
electricity. According to the IEA, in 2015, power plant emissions due to space cooling accounted 
for 9% of sulphur dioxide (SO2) emissions and 8% of nitrogen oxides (NOx) and particulate matter 
(PM2.5) emissions globally.161 Without further action, air conditioning-related emissions could 
cause up to 9% of all air pollution-linked premature deaths by 2050.162 Reducing energy demand, 
by improving cooling efficiency and reducing the need for cooling, can reduce energy-related air 
pollutants and climate emissions, thereby contributing to improved public and ecosystem health 
and reduced mortality. IEA calculates that doubling air conditioner efficiency together with 
halving the global average carbon intensity of electricity generation could reduce up to 85% of 
global SO2 emissions between 2015 and 2050 compared to a baseline scenario.163 An IEA study 
of cooling in China estimates that more efficient air conditioning in buildings would reduce both 
CO2 and major air pollutants by about 30% in 2030 relative to a baseline scenario.164 Purohit et al. 
(2018), looking only at the electricity savings from efficiency associated with HFC refrigerant 
alternatives and not the much larger potential from equipment efficiency improvements, observed 
health benefits from reduced PM2.5 exposure.165 Abel et al. (2018) found that avoiding increased 
energy demand from air conditioning could avoid a linked significant increase in air pollution 
emissions and public health impacts.166 
 
MAC is also a substantial and growing contributor to air pollution emissions. The World Health 
Organization estimates that road transportation is responsible for up to 50% of particulate matter 
emissions in OECD countries. Worldwide, MAC systems account for 3 to 7% of total fuel use for 
light-duty vehicles but can reach up to 40% of fuel use in congested and hot, humid climates.167  
 
MAC for cars, vans, buses and trucks currently consume almost 2 Mboe/d (million barrels of oil 
equivalent per day), and this is expected to nearly triple to over 5.7 Mboe/d by 2050. Annual 
climate emissions from the MAC sector are around 420 MtCO2e (approximately 70% from energy 
and 30% from refrigerants), and these are expected to rise to 1.3 GtCO2e in 2050 without further 
policy action. In an Efficient Cooling Scenario, MAC energy consumption could be limited to 2.8 
Mboe/d in 2050 through well-known and already commercialized technology for efficiency 
improvements. Despite large additions of new vehicles between now and 2050, annual climate 
emissions could fall by 20% from today’s levels to 320 MtCO2e, as a result of improved efficiency 
and a shift to low-GWP refrigerants.168 Energy demand for MAC is a key performance limitation 
for electric vehicles (EVs); the range of EVs can be reduced by as much as half on hot days because 
of MAC usage.169 While energy-efficient heat pumps in EVs have been demonstrated to extend 
range,170 this may come at an environmental cost depending on the heat pump design and 
refrigerant choice: some EVs use greater amounts of high-GWP refrigerant for heat pumps than in 
direct expansion MACs.171 
 
Benefits for electric utility decarbonization. The rapid growth in energy demand for cooling poses 
a challenge for decarbonizing electricity generation. The rate of electricity demand in buildings 
increased five times faster than improvements in the carbon intensity of the power sector between 
2000 and 2018,172 driven by space cooling as the fastest growing use of energy in buildings.173 
From a capacity perspective, over 100 GW of space cooling capacity in buildings was added in 
2017, outpacing the record 94 GW of solar generation capacity additions that year174—a dramatic 
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indication that a net-zero electricity system may not be achieved with the needed speed without 
controlling growth in demand for cooling. Moreover, air conditioning drives electricity “peak 
loads” in many countries, contributing half to four-fifths of peak demand in hot climates,175 
including in cities such as Beijing during heat waves.176 Peak power is usually the oldest, most 
carbon intensive and polluting, and most costly, straining electricity grids, household, and national 
budgets.177 EVs will add to the challenge of decarbonizing by 2050. 
 
3.3 Opportunities for reducing climate emissions from the cooling sector while meeting 

cooling needs. 
 
Achieving the benefits described above requires an understanding of the opportunities for reducing 
energy-related emissions from each cooling sector. Chapter 4 discusses policies for promoting the 
opportunities discussed next. 
 
Space cooling strategies. There are a number of strategies for reducing energy-related emissions 
from space cooling. These fall into two broad categories: 

• First, improving the energy efficiency of space cooling equipment. 
o Moving to best available technology on the market could reduce energy use by up 

to 70% compared to typical units for the most common type of air conditioner 
(ductless mini-splits). Most air conditioners sold are 2 to 3 times less efficient than 
best available on the market (see Figure 3.2).  

o Improving installation of new equipment and monitoring and maintenance of 
existing equipment could deliver substantial electricity savings of up to 20% (700 
TWh annually), particularly if equipment has not been maintained for a long time, 
leading to emissions savings of up to 0.5 GtCO2e per year.178 

o Adopting district cooling and system approaches, where appropriate. By 
connecting multiple buildings, district cooling systems can safely manage 
alternative refrigerants and target much higher primary energy efficiencies through 
improved operation and use of local renewable energy sources, free cooling (from 
natural cooling sources such as rivers, lakes, seawater, etc.) and waste heat.179 
Properly designed district cooling systems can benefit from larger chiller systems 
that can be up to 2 to 3 times as efficient as smaller individual units,180 reduce peak 
power requirements181 and use not-in-kind technologies including vapour 
absorption systems, natural heat sinks such as rivers, lakes and seawater, heat 
pumps, and thermal storage etc.182 Further options exist to improve cooling system 
performance through systems that capture and use otherwise wasted heat and 
energy and thermal storage that allows electricity production at times of day with 
lowest carbon intensity (carbon/kWh delivered to load).183 

o Innovating new technologies to go beyond the current 14% of maximum theoretical 
efficiency of typical residential air conditioners.184 
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Figure 3.2: Efficiency of available residential ACs in selected countries/regions. Efficiency estimated in ISO 
Cooling Seasonal Performance Factor (CSPF) based on IEA data converted to common metric using relationships in 
Park et al. (2020).185 
 

• Second, reducing demand for cooling through improved building design, management, 
shifts in user behaviour, and use of green and more reflective surfaces. 

o New construction offers the best opportunity for building design optimization, 
including orientation and window placement to reduce the heat entering a 
building.186 Improvements in the energy efficiency of building envelopes—the 
material components of a building’s structure such as insulation, walls, roofs and 
windows—could reduce energy needs for cooling in hot climates by 10 to 40%.187 
Over 77 billion m2 will be built over the next ten years, adding more floor area than 
currently exists in China, mostly in emerging economies such as India, Indonesia, 
and Brazil.188 

o Low- and no-cost building energy management practices, such as those 
recommended by Energy Star,189 can further reduce energy demand for cooling. 
These include best practices for operations and maintenance, such as replacing 
filters monthly, cleaning coils and keeping vents clear from obstruction, which can 
increase energy use by 25% or more. 

o Simple measures such as adjustments in thermal comfort levels and better 
ventilation, e.g. natural ventilation or air-to-air heat exchangers,190 along with more 
active measures such as choosing part-time, part-space (i.e., zoned) equipment 
rather than non-zoned ducted centralized cooling equipment could reduce the 
energy demand from cooling by up to 80%.191 In India, guidelines have been issued 

https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/stamp-out-energy-waste
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to encourage increasing temperature set points to 24°C in commercial buildings, 
which can save 20% in annual energy consumption compared to a 20°C set point.192 

o Making roof surfaces and pavements more reflective and increasing vegetation 
cover helps to counteract the effects of urban heat islands. White and other cool-
coloured roofs can stay 31°C cooler than standard grey roofs.193 IEA estimates that 
well-designed landscapes could potentially save 25% of the energy used for heating 
and cooling.194 Tree canopy cover exceeding 40% was found to lower temperatures 
in a U.S. city by an average of 3.5°C.195 The city of Medellín, Colombia, won the 
2019 Ashden Award for Cooling by Nature for the creation of green corridors that 
have reduced temperatures by up to 3°C.196 A modelling analysis found that city-
wide adoption of cool roofs, green roofs, solar photovoltaics, reflective pavements 
and increased tree canopy in three U.S. cities could achieve net benefits of $4.9 
billion to $8.4 billion (including avoided summer tourism losses) over 40 years in 
avoided energy, health-related, and other costs, while substantially cutting 
excessive day and night-time peak temperatures.197 
 

Refrigeration strategies. There are two main classes of refrigeration to consider for improving 
energy efficiency: 

• Domestic refrigerators and freezers have significant potential to improve energy use by 
about 50% to 60% for best available models on the market compared to average units in 
countries with existing energy efficiency policies.198 The stock of domestic refrigerators in 
developing and emerging countries is expected to grow from about 1.4 billion in 2015 to 
over 2 billion by 2030, with most going into homes that did not previously have a 
refrigerator.199 Developing countries could attain energy savings of more than 60% by 
discouraging dumping of inefficient equipment and adopting measures such as minimum 
energy performance standards.200 Highly efficient, low-GWP models are widely available 
and are sometimes cheaper than lower-efficiency models, even on a first-cost basis.201 

• Commercial refrigeration, industrial refrigeration, and cold chains include a broad range 
of refrigeration equipment, from stand-alone refrigerated display cabinets to large 
commercial refrigeration equipment used in supermarkets, to pack-houses and small 
refrigerators for vaccines and medicines. Supermarkets have an opportunity to significantly 
improve the energy efficiency of their refrigeration systems (15 to 77%, depending on 
type202). For example, recent demonstration projects for utilizing low-GWP alternatives to 
HFCs presented by the Climate and Clean Air Coalition (CCAC) calculated energy savings 
of 15% to 30% and carbon footprint reductions of 60% to 85% for refrigeration in 
commercial food stores.203 

• Improving cold chains is also essential to reducing post-harvest food loss. In 2017, one out 
of nine people—821 million people—were undernourished, with greatest hunger in 
countries with a high proportion of the population dependent on climate vulnerable 
agricultural systems.204 The International Solar Alliance has launched the Solar Cooling 
Initiative to increase usage of solar and solar-hybrid linked cold chain and cooling systems 
to utilize untapped renewables in meeting cooling demand.205 One promising approach is 
the creation of “cooling hubs,” aggregating demands to address the needs of rural farmers 
and fishers for cold chains, other local community needs, and access to medicines.206 

 
Mobile cooling strategies. 

• On-road diesel transport is responsible for nearly 20% of all black carbon emissions 
globally, and refrigerated transport can increase vehicle emissions by as much as 40%.207 
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Nearly 70% of these emissions could be eliminated by 2030 through the application and 
enforcement of higher vehicle emissions standards and diesel particulate filters.208 
Refrigerated transport efficiency can also be increased by improving insulation and 
mechanical efficiency of refrigeration units, and optimizing delivery, loading and 
offloading processes. 

• MAC systems provide thermal comfort and proper visibility by defogging in passenger 
cars, commercial vehicles, buses, trains, planes, etc. The transition to low-GWP 
refrigerants coincides with the adoption of increasingly stringent vehicle emissions and 
fuel economy standards around the globe. An increasing number of countries are looking 
to improve MAC fuel efficiency, either directly by incorporating MAC use in vehicle fuel 
efficiency test cycles, or indirectly through the availability of off-cycle credits. Off-cycle 
credits aim to reward the use of technologies or designs that increase efficiency in the real 
world, but whose benefits are not captured via the standard testing procedure. As such, off-
cycle credits can incentivize new and innovative technologies.209 Studies suggest potential 
energy efficiency improvements of 55 to 63% for MAC (see Figure 3.3).210 Innovative 
technologies like secondary loop MACs allow a greater choice of affordable low-GWP 
refrigerants while reducing charge size and leak rates, which save consumers money on 
service and fuel.211 Low-GWP MAC alternatives are a proven technology with over 70 
million vehicles on the road equipped with HFO-1234yf MACs as of the end of 2018 with 
technology near commercialization for an even lower carbon footprint.212 Policies and 
incentives can encourage greater adoption of low-GWP and energy-efficient MACs in 
markets where last-generation HFC-134a is still used. 

 

 
      Figure 3.3: Efficiency improvement potential of MAC in cars and vans. (IEA 2019) 
 
3.4 Strategies for reducing emissions from air conditioning and refrigeration. 
 
The billions of ACs and refrigerators and air-conditioned vehicles that will be produced to meet 
the growing demand for cooling in a warming world have not yet been designed nor made. Equally, 
much of the building stock in which this equipment will be used is yet to be built or is expected to 
be refurbished.213 Thus there is a huge opportunity to shift the future of cooling and its energy and 
environmental impacts by changing the trajectory of the technologies, solutions, and behaviours 
that drive cooling demand and its impacts.  



Assessment of Climate and Development Benefits of Efficient and Climate-Friendly Cooling 
 

 26 

The following policies can promote improvements in energy efficiency of cooling equipment: 
• Minimum Energy Performance Standards and energy efficiency labelling 
• Bulk procurement and buyers clubs 
• Replacement programs 
• Servicing and technical training 
• Building codes 
• Vehicle efficiency standards that include AC 

 
Sound policy is key to achieving the emissions reduction potential in the cooling sector and is the 
subject of the next chapter of this report. 
 
 

   Indirect (energy-related) Direct (refrigerant) Total (direct and indirect) 
Note    Reference Policy Avoided Reference Policy Avoided Reference Policy Avoided 

Stationary space cooling & stationary refrigeration 
2020-2030 Stationary AC & refrigeration 84 40 45 16 2 15 109 52 60 a* 
2030-2050 Stationary AC & refrigeration 300 137 164 60 6 54 386 178 217 a 

Range: Low (-20% GDP growth, Decreasing EF), high (+20% GDP growth, Static EF)  134-260   
2030-2060 Stationary AC & refrigeration 514 232 282 102 11 91 659 302 373 a 

Range: Low (-20% GDP growth, Decreasing EF), high (+20% GDP growth, Static EF)  210-460   
Stationary space cooling (residential & commercial)  
2020-
2030 

Residential AC 8                 b 
Mini-split AC and packaged AC 36 10 25 5 1 4 41 12 30 a 
VRF/ducted, chiller 23 14 9 4 0 3 27 14 12 a 
All stationary AC 59 24 34 9 2 8 68 26 42 a 
All stationary AC 21     7     28     c 
All stationary AC: Cooling for All 46     13     59     c 
All stationary AC 18 12 6             d 

2020-
2050 

Residential AC 36                 b 
Mini-split & small packaged AC 116 36 80 51 21 30 167 57 110 e 
 Range: decreasing EF 81 36 45 51 21 30 132 57 75 e 
All stationary AC 96     22     118     c 
All stationary AC: Cooling for All 193     48     241     c 
All stationary AC 57 18 39             d 

2030-
2050 

Mini-split AC and packaged AC 140 40 100 21 5 17 161 45 116 a 
VRF/ducted, chiller 73 45 29 12 1 11 85 46 40 a 
All stationary AC 213 84 129 33 6 27 246 90 156 a 

2030-
2060 

Mini-split AC and packaged AC 245 70 175 38 9 29 283 79 204 a 
VRF/ducted, chiller  122 74 48 19 2 18 141 76 66 a 

2020-2100 Residential AC 246                 b 
Stationary refrigeration (residential & commercial) 
2020-
2030 

Domestic, Supermarket, CRE, remote 
condensing 26 15 10 7 0 7 41 26 18 a* 

Residential, Commercial, Industrial 12   4   17   c 
Residential, Commercial, Industrial -- 
Cooling for All 15   6   21   c 

2020-
2050 

Residential, Commercial, Industrial 34   12   46   c 
Residential, Commercial, Industrial -- 
Cooling for All 48   21   69   c 

2030-
2050 

Domestic, Supermarket, CRE, remote 
condensing 87 52 35 26 0 26 140 87 61 a 

2030-
2060 

Domestic, Supermarket, CRE, remote 
condensing 147 88 59 44 0 44 235 147 103 a 

Table 3.1: Summary of studies projecting energy-related emissions from one or more cooling sectors through 
2050 under reference and policy scenarios. Note values may not add due to rounding 

a: LBNL 2019 (Shah et al., 2019) Study estimates technical potential. Reference and policy cases assume constant 
electricity emission factors (i.e., no decarbonization). Policy scenario replaces all equipment with “best available” 
technology (up to 70% improvement in EE) and low-GWP refrigerants; update to Shah et al. (2015) using IEA (2018) 
AC stock projections; expanded sectors. * denotes extended analysis. 
b: Isaac and van Vuuren (2009). 
c: University of Birmingham (2018) and Green Cooling Initiative. 
d: IEA (2018) Reference includes CAGR 0.7% EE improvement for stock, and decarbonization (New Policies 
Scenario); Policy is Efficient Cooling Scenario (doubling EE) – avoided emissions does not account for reduced 
emissions due to decarbonization, which would double emissions reductions in 2050.214 
e: RMI 2018 (Sachar et al., 2018) Policy is 5X climate impact, includes decarbonization (IEA New Policies Scenario). 
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Box 3.1: Defining “Cooling for All” Nineteen air conditioners, refrigerators, or mobile air 
conditioners will be installed every second for the next thirty years, according to one 
projection.215 However, even with this massive growth of the cooling sector, much of the 
warming world will still be without access to cooling, suffering the consequences: poverty, 
malnutrition, spoiled medicines, and unsafe living and working environments. Several 
studies have sought to answer the question: “what would a world where everyone who 
needed it had access to cooling look like, and what would it mean for our renewable energy 
systems and overall climate change mitigation targets?” 

 A Cool World – Defining the Energy Conundrum of Cooling for All set out a 
scenario whereby refrigeration equipment penetrations globally converge by 2050 
with those experienced in the developed world today, and air conditioning is made 
available to all populations experiencing more than 2000 Cooling Degree Days 
(CDD, using 21.1°C as basis) per year. Without action beyond the current rate of 
technological progress in increasing the efficiency of cooling equipment, meeting 
the demand under the “cooling for all” scenario would double global annual energy 
consumption for cooling in 2050 from 9,500 TWh to 19,600 TWh.216 For 
comparison, total global electricity demand in 2018 was 23,000 TWh.217 
 International Energy Agency’s Cooling for All explores two scenarios for 
providing the roughly 105 terawatt-hours (TWh) of electricity in 2050 needed to 
meet the energy demands of the 720 million people—or 175 million households—
gaining access to an air conditioner by 2050 in the Cooling for All scenario. 
Around 45% of that electricity would be consumed by the AC units, emitting over 
12 MtCO2 in 2050 and other air pollutants, especially when powered by diesel 
generators, and adding costs beyond other basic energy services, such as lighting 
and refrigeration provided via universal electricity access. If the average 
performance of the household ACs were to improve by 50% by 2050, the yearly 
running cost for a diesel generator providing that electricity access for three hours 
of daily cooling would drop by more than a third. Current off-grid solar PV and 
battery powered home energy systems can’t cover the electric demand for typical 
inefficient household ACs. A more efficient AC would enable the solar module to 
cover nearly 95% of the electricity demand on a good day. Alternative technologies 
to air conditioning—such as high-efficiency fans, evaporative coolers (in dry 
climates) and dehumidifiers (in humid climates)—could help to improve access to 
thermal comfort in the evening, when people return home, while using far less 
electricity than an AC. These measures could also fit well with current solar PV 
module deployment in many countries.218 
 A third report, Chilling Prospects: Providing Sustainable Cooling for All, 
produced by SEforAll in 2018, was the first to define and quantify the magnitude 
of the global cooling access challenge in human terms, including an assessment of 
52 countries facing the biggest risks, measured by extreme heat, food losses, and 
damaged or destroyed vaccines and medicines. The report reviews access to 
cooling needs among the rural poor, slum dwellers, and carbon captives across 
three general areas of need: human safety and comfort, food security and 
agriculture, and health services. Nine countries are identified as facing the biggest 
risks: China, India, Indonesia, Nigeria, Bangladesh, Brazil, Pakistan, 
Mozambique, and Sudan.219 A revised and updated version was released in 
November 2019.220 
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CHAPTER 4: POLICIES AND RECOMMENDATIONS 
 

 
There are proven policies for capturing the climate and development benefits highlighted in this 
report. In addition to the focus on cooling efficiency by the Montreal Protocol Parties, maximizing 
the Kigali Amendment’s climate and development benefits will require coordination with energy 
efficiency policies to integrate cooling efficiency technologies into the broader frameworks. 
 
Such a holistic approach to cooling policy, together with efficient and smart use of public finances, 
can create the conditions necessary to realize the climate and development benefits described in 
this report. If left unchecked, as the IEA has concluded, it is highly unlikely that manufacturers 
will push for the development of energy-efficient technologies or stringent building codes on their 
own. It is ultimately the duty of public authorities at local, national, and international levels to 
systematically mandate improvements in energy efficiency in all sectors,221 alongside 
implementation of policies to achieve the HCFC phaseout and HFC phasedown mandated by the 
Montreal Protocol. 
 
This combined strategy of improved energy efficiency alongside refrigerant transition can help 
implement the Paris Agreement, as countries enhance their Nationally Determined Contributions 
(NDCs) in line with the recommendations in the IPCC’s Special Report on 1.5°C. Efficient cooling 
also is an increasingly important strategy for adapting to a warming world and for meeting multiple 
development goals. A program to improve efficiency can start by measuring “cooling access gaps” 
and by setting targets to reduce the gaps by sector and geographic location, with specific timelines 
to ensure climate and development benefits. Such cooling needs assessment could inform cooling 
action plans. 
 
4.1 Policies and financing strategies can promote fast HFC phasedown in parallel with 

improvements in the energy efficiency of cooling equipment. 
 
In addition to the policies and strategies described in Chapters 2 and 3, the following additional 
policies and strategies should be considered for capturing the climate benefits from a fast 
phasedown of HFCs in parallel with improvements in energy efficiency of cooling equipment. 
 

• Fast ratification and implementation of the Kigali Amendment along with other measures 
that follow Montreal Protocol’s “start and strengthen” approach can accelerate climate 
protection. 

 
As of 1 January 2020, 91 Parties have ratified the Kigali Amendment.222 All other amendments to 
the Montreal Protocol have achieved universal ratification,223 and it is expected that this will be 
the case with the Kigali Amendment as well. In addition, the Montreal Protocol is known as a 
“start and strengthen” treaty because in the past the Parties have regularly shortened their initial 
control schedules.224  
 
Accordingly, HFC phasedown policies could include encouraging fast ratification and 
implementation of the Kigali Amendment by all Parties. It also could include accelerating the 
initial HFC phasedown schedule, for example, by leapfrogging high-GWP HFCs during the 
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current HCFC phaseout and moving directly into climate-friendly alternatives. This will avoid the 
build-up of banks of HFCs embedded in products and equipment and avoid a second conversion, 
where Parties that moved from HCFCs into HFCs then have to move again into climate-friendly 
alternatives. Another policy to address the banks would ensure that at product end-of-life the HFCs 
are captured and recycled or destroyed. 
 

• National Cooling Action Plans can help integrate policies that traditionally are addressed 
separately and accelerate transition to low-GWP and high-efficiency cooling. 

 
National Cooling Action Plans enable policymakers to signal the market and create favourable 
conditions for a streamlined transformation that provides investment security to producers and 
end-users, while maximizing preparation for anticipated future requirements.225 These cooling 
action plans need to account for national circumstances including current and projected demand 
for cooling, corresponding energy use, economic drivers, and the current state of the market.226 
This is important for communicating expectations to the cooling value chain on refrigerant choice 
and energy performance. National plans can include the other policies discussed in this chapter, as 
well as up-front incentives and regulations to quickly drive the market alongside longer-term 
signals. This can help lower barriers for the “first movers” who are offering higher efficiency and 
low-GWP solutions. 
 
National Cooling Action Plans, such as recently adopted in China,227 India,228 and Rwanda,229 
combine high-level policy ambition with strategies addressing the entire value chain, including 
identifying potential governance gaps (for example, lack of effective monitoring, validation, 
reporting, and enforcement), loopholes or exemptions in regulatory measures, capacity-building 
needs such as training for equipment maintenance and customs officials, and finance issues such 
as the need for manufacturer access to credit lines and measures to reduce the first cost to end-
users (which bulk procurement also can do).  
 
Cooling action plans can extend beyond mechanical cooling through policies to encourage better 
buildings with integrated passive design features, nature-based solutions such as enhanced tree 
canopies, and cool roofs and other smart reflective surfaces.230 Ensuring sufficient and efficient 
refrigeration for the health sector and the cold chain from farm (or sea or lake) to table to reduce 
food loss and increase farmers’ and fishers’ incomes is another important opportunity for policy 
intervention that can be included.231 These and other policies can be addressed in National Cooling 
Action Plans, along with measures to protect populations at risk from gaps in cooling access. 
National Cooling Action Plans should further address cooling needs across the spectrum of risks 
faced by vulnerable groups in terms of human comfort and safety, agriculture, nutrition, and health. 
Policies are also needed for building local capacity to ensure proper instructions for working with 
refrigerants and learning about low-GWP technologies. An illustration is OzonAction’s 2018 
“twinning program” to provide joint training of national ozone offices and national energy 
efficiency offices.232 
 
Governments can use National Cooling Action Plans to identify opportunities to incorporate 
efficient cooling into enhanced NDCs.233 Cities also have an important role to play in promoting 
efficient and climate-friendly cooling, through urban heat mitigation plans, building codes and 
zoning, and urban planning for green spaces.234  
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• Efficient cooling strategies can be integrated into policies for sustainable buildings.

Over the years, demand for cooling from buildings has steadily risen, and currently accounts for 
nearly one-fifth of total building electricity use.235 With an addition of 130 billion square meters 
of new building construction expected over the next 20 years, there is an urgent need for building 
codes that mandate cooling efficiency.236 This is equivalent to adding the floor space of Paris to 
the planet every five days.237 

Reducing energy demand for cooling in buildings requires the adoption, regular updating, and 
proper enforcement of building energy codes and minimum energy performance standards for 
cooling equipment.238 While energy efficiency policies for cooling equipment are essential, the 
best first step is to reduce the need for cooling through improved building design, 
construction, retrofitting, and operation.239 Once a building has been constructed, the 
amount of cooling required for thermal comfort gets locked in.240 

Building energy codes are the most effective policy instrument to reduce demand for cooling in 
new buildings or during major retrofitting plans. Building codes can take multiple forms based on 
prescriptive or performance-based categorization.241 Some policymakers are developing 
‘outcomes-based’ performance-based codes which require minimum energy performance in the 
actual operation of the building.242 

Advances in Internet-of-Things (IoT) devices have resulted in improved data collection of cooling 
devices at industrial, commercial, and residential levels. Using sensors and smart thermostats, 
granular real-time user data is fed into predictive models to optimize the cooling needs of the 
occupants, resulting in energy savings due to lower consumption, and reduced peak load electricity 
demand by enabling demand-side response. These optimization models can be extended from the 
individual consumer to building- and plant-level data, which over time results in substantial cost 
savings and focused efforts in demand-side management.243 

• Environmental, energy performance, and refrigerant safety standards can work in tandem
to facilitate the transition to efficient and low-GWP cooling.

MEPS are effective in increasing the energy efficiency of standardised mass-manufactured 
equipment such as refrigerators and air conditioners.244 These policies are part of a “toolbox” that 
can be complemented by labelling schemes as well as up-front incentives such as consumer rebates 
and industry tax relief.245 

Labelling programmes promote the sale of energy-efficient cooling technologies. Consumers can 
make informed decisions based on a variety of indicators such as: amount of cooling the unit can 
produce, required energy, and details of the compressor. With developments in performance of the 
equipment, labelling programmes are best designed such that they account for future 
improvements and provide for regular upgrades of the product testing and labels. 

Regional cooperation and adoption of common standards and forward-looking efficiency tiers, 
such as the model regulation guidelines for energy-efficient and climate-friendly refrigerating 
appliances developed by UNEP’s United for Efficiency,246 would enable manufacturers to 
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capitalize on scale and drive down costs while increasing availability of efficient and low-GWP 
cooling equipment.247 Furthermore, policymakers can give their markets a clear policy trajectory, 
such as Japan has done with its Top Runner program,248 and increase investor confidence that there 
will be a market for higher-efficiency products by setting increasingly stringent longer-term targets 
for energy efficiency alongside the HFC phasedown.249 
 
MEPS and energy efficiency programs need to be coordinated with safety standards and technical 
requirements for low-GWP alternatives, for example as part of replacement and recycling 
programs.250 Furthermore, chemical management regulations can require collection and 
destruction of obsolete, unwanted, and used refrigerants. Countries can ensure appropriate focus 
on climate mitigation by working with standardization organisations and participating in 
international standards development for refrigerant classifications, safety rules, and charge limits 
for flammable or toxic substances. 
 
Effective monitoring, reporting, and verification schemes for refrigerants are essential to meet the 
HFC phasedown schedule, including schemes for monitoring production and consumption, as well 
as measuring atmospheric concentrations.vi Implementation of life cycle performance metrics is a 
good integration tool to ensure all the elements of cooling are considered. These should be 
combined with the continued development and introduction of technical and safety standards for 
low-GWP HFC alternatives, as well as training and capacity building for relevant stakeholders. 
 

• Aggregating demand through public procurement and private buyers clubs can speed 
adoption and reduce the cost of super-efficient refrigeration and air conditioning 
equipment. 

 
Public procurement and private “Buyers Clubs” pool the State’s or private members’ collective 
buying power (bulk procurement) to aggregate demand to make purchases of large quantities of 
products at lower prices than would be available independently, while simultaneously demanding 
newer, energy-efficient, and higher quality models.251 The strategic use of this consumer power is 
a key transformation tool to address what otherwise could be higher initial costs of super-efficient 
ACs and other equipment, and can help next-generation technologies penetrate the market faster. 
India has demonstrated that bulk public procurement can deliver super-efficient ACs that are 
comparably priced with average (3-star) units, over 40% more efficient, perform at high ambient 
temperatures, are reliable over wide operating voltage range, and are backed up by five years of 
additional warranty.252 India is sharing its experience with other countries. Bulk procurement 
through private “Buyers Clubs” and partnerships253 are underway in Morocco for room ACs and 
in Brazil for manufacture and promotion of inverter AC technology. 
 
 

                                                 
vi Historically, the parties to the Montreal Protocol have achieved a high level of compliance with their obligations. 
An exception is the recent discovery of large unexpected emissions emanating from potentially illegal production of 
CFC-11. See Montzka, S.A., Dutton, G.S., Yu, P., Ray, E., Portmann, R.W., Daniel, J.S., et al. (2018). An unexpected 
and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557(7705), 413; see also Rigby, M., 
Park, S., Saito, T., Western, L.M., Redington, A.L., Fang, X., et al. (2019). Increase in CFC-11 emissions from eastern 
China based on atmospheric observations. Nature 569(7757) 546. Steps are underway by the Montreal Protocol 
community to address this. 
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• Utility regulation can reduce peak demand and offer incentives to purchase efficient 
cooling equipment. 

 
The consumers’ decision to buy efficient cooling equipment and how they operate it has a 
significant impact on electric utilities as an influence on peak demand and the need for new 
generating capacity. Consequently, various strategies have been deployed to promote purchase of 
more efficient cooling equipment and to limit demand during peak periods, for example by 
charging higher prices of electricity during peak periods,254 subsidies for purchase of more 
efficient systems, and information or awareness campaigns.255 With the advent of digital 
technologies, it is also now possible for utilities to exercise direct control of cooling equipment to 
cap consumption during peak periods, usually in return for some financial reward for 
consumers.256 Cooling capacity can also be adjusted to the availability of on-site electricity 
production, a concept used in China to match the operation of air conditioning units with the power 
available from solar panels.257 
 

• Careful installation, maintenance, and servicing can improve energy efficiency over the 
product life. 

 
Improved installation and servicing practices to reduce refrigerant charge and leakage will also 
maintain energy performance of equipment and lower the cost of ownership through less frequent 
service.258 Skilled technicians are key to proper installation and servicing of equipment and to the 
rapid adoption of new technologies. Governments and industry have common interests in 
attracting, retaining, and upskilling technicians in the cooling sector to adapt to fast technological 
developments and maximize associated environmental and economic benefits.259 Degradation of 
equipment energy performance can occur due to poor installation, such as stacking or clustering 
condensers to create mini “heat islands” or insufficient maintenance practices (contributing to 
reduced air flow and incorrect refrigerant charge) and environmental factors (depositions on heat 
exchangers).260 Degradation also occurs with age for refrigerators and ACs. As refrigerators have 
been redesigned for higher efficiency, the new designs—having more insulation, better seals, and 
more efficient compressors—may be more resistant to performance degradation. In some cases, it 
is very simple to upgrade efficiency to incorporate new technology; for example, replacing an 
incandescent lightbulb in a refrigerator with an LED lightbulb has the double benefit of using less 
electricity to light interior and creating less heat that needs to be removed by longer operation of 
the motor and compressor.261 
 

• Effective anti-environmental dumping campaigns can help transform markets. 
 
Inefficient cooling equipment dumped into developing, economy-in-transition, and developed 
countries undermines national and local efforts to manage energy, environment, health, and 
climate goals, including achieving the SDGs. 
 
Specific regulations can be put in place to avoid environmental dumping, beginning with the 
simplest one: the requirement for “prior informed consent” of the Rotterdam Convention.262 
Parties to the Montreal Protocol have employed this practice, which involves exercising the right 
of the importer to know information about the product before consenting to its import.263 Requiring 
imported appliances to include information on a product’s energy performance and climate impact 
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can be a powerful step toward achieving the Kigali Amendment’s climate benefits. In this regard, 
it is important to ensure effective compliance with labels on imported equipment that indicate low-
GWP and energy-efficient technologies. Additional strategies for eliminating unwanted dumping 
are described in a legal and policy “toolkit.”264 
 

• Financing can speed the HFC phasedown and energy efficiency improvements. 
 
Access to funding can speed the transition to low-GWP refrigerants and energy-efficient 
equipment in line with Kigali objectives and help capture the nearly $3 trillion in energy savings 
from investment and operating costs identified by the IEA.265 In addition to the support for the 
HFC transition from the Multilateral Fund of the Montreal Protocol, there are international 
(including multilateral development banks266), national, and private financing mechanisms that 
could support the energy efficiency transition. These include traditional tools such as funds 
provided through national budgets, fee-generating product registration schemes, and electricity 
tariffs.267 Other mechanisms include equity, commercial or concessional loans, risk-sharing 
facilities, technical assistance grants, market-based instruments, and fiscal incentives or 
penalties.268 For example, in Mexico, green mortgages developed with support from the 
International Finance Corporation are supporting residential developments incorporating passive 
design and energy-efficient refrigerators.269 
 
A current challenge is the absence of coordination between funding from the MLF for refrigerant 
replacement and funding for energy efficiency from the Green Climate Fund, Global Environment 
Facility, and other climate funds.270 This is inefficient and potentially costly if cooling systems are 
optimized for one objective at a time, requiring multiple changes in equipment. The Biarritz Pledge 
for Fast Action on Efficient Cooling (see Box 4.2), discussed below, offers hope that this issue will 
be addressed in the near future. 
 
Commercial or concessional loans in certain markets are mobilized using revolving funds such as 
the Energy Efficiency Revolving Fund in Indonesia, whose initial fund size in 2003 was THB 2 
billion (c. USD $63 million) and reached USD $261 million by September 2010, including USD 
$27.5 million allocated for renewable energy projects.271 
 
The development of innovative financing, such as cooling-as-a-service272 and on-bill financing, 
also can support the transition to low-GWP and energy-efficient cooling. Much of the investment 
required to achieve the transition could be self-funded by purchasers or as part of loans for new 
equipment. Private finance can step in, but governments also have a role to facilitate such 
investment opportunities, for instance de-risking and enabling new business models such as energy 
service agreement or energy performance contracting via energy service companies. 
 
Insurance packages that de-risk initial operations by providing standardized insurance scheme 
contracts, catalyse initial adoption in countries looking to leapfrog legacy systems. For example, 
the Energy Savings Insurance (ESI) scheme facilitates commercial access to credit lines by 
partnering with national development banks to develop standardized structures for catalysing 
energy efficiency in Latin America. If implemented in all relevant developing countries, the ESI 
aims to attract $10–$100 billion in energy efficiency project investments between now and 2030 
and provide annual emissions reduction of 20–200 MtCO2.273 
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Furthermore, tracking and benchmarking access to sustainable cooling finance, which is still 
lacking, should be a clear focus of governments and financial institutions.274 
 

• International cooperation remains essential for delivering needed climate mitigation. 
 
All countries in the United Nations have ratified the Montreal Protocol and all previous 
amendments,275 and continuing international cooperation is needed to deliver the substantial 
climate mitigation from the transition to low-GWP and energy-efficient cooling. This 
collaboration can take many forms and is illustrated by the Cool Coalition,276 which offers a 
platform for governments, private sector, and civil society to promote the transition to efficient, 
clean cooling, as well as by the Efficient Cooling Initiative of the Climate and Clean Air Coalition 
(CCAC),277 a ministerial-level partnership with more than 100 partners including 65 countries as 
well as international and regional finance institutions. Another important actor is the Kigali 
Cooling Efficiency Program (K-CEP), a philanthropic collaborative that to date has provided USD 
$50 million of support to international organizations, governments, and the private sector to scale 
up efficient clean cooling.278 
 
Finally, heads of State and government are coming together to pledge fast action on cooling 
efficiency through the heads of state “Biarritz Pledge for Fast Action on Efficient Cooling,” under 
the leadership of President Macron of France, who launched the Biarritz fast action pledge with 
other leaders at the August 2019 G7 Summit in Biarritz.279 The above-mentioned coalitions, 
initiatives, and pledges were highlighted at the UN Secretary General Climate Action Summit.280 
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Box 4.1: The Growing Movement Behind Fast Action on Efficient Cooling 

The need and significant climate benefits available from fast action to phase down HFCs and improve 
the energy efficiency of the cooling sector has been widely recognized at the highest levels of 
governance and by various international initiatives and collaborations. A variety of actions are needed 
urgently and at scale. Momentum is growing on fast action on efficient cooling with the Biarritz Pledge 
(see Box 4.2), as well as: 

Launched in response to UN Secretary General’s Climate Summit call to action with over 100 actors 
committing to over 150 actions on efficient, climate-friendly cooling,281 the Cool Coalition is 
supporting: National Cooling Action Plans, Minimum Energy Performance Standards (MEPS) and 
labels, the scaling up of finance, technology pilots, innovative products, district cooling, cooling-as-a-
service agreements, cool (reflective) and green roofs, surfaces and spaces, Cooling audits, knowledge 
resources and services. Cool Coalition partners promote a ‘reduce-shift-improve-protect-leverage’ 
cross-sectoral approach to meet the cooling needs of both industrialized and developing countries, all 
aimed at raising climate ambition in the context of the Sustainable Development Goals while 
complementing the goals of the Kigali Amendment to the Montreal Protocol and the Paris Agreement. 

Action is also being driven by the Kigali Cooling Efficiency Program (K-CEP), as a philanthropic 
collaborative that works in tandem with the Kigali Amendment of the Montreal Protocol by helping 
developing countries to speed and scale efficient, climate-friendly cooling. K-CEP focuses on the 
energy efficiency of cooling in order to double the climate benefits and significantly increase the 
development benefits of the Kigali Amendment to phase down HFCs. 

The Efficient Cooling Initiative of the Climate and Clean Air Coalition, launched August 2019, is co-
led by France, Japan, Rwanda, and Nigeria, as well as UN Environment Programme, UN Development 
Programme, the World Bank, and the Institute for Governance & Sustainable Development. It brings 
together governments, intergovernmental organizations, and the private sector to build high-level 
political leadership and facilitate collaboration among stakeholders. The Efficient Cooling Initiative 
aims to enhance energy efficiency in the cooling sector while countries implement the phasedown of 
HFC refrigerants under the Kigali Amendment. 

World Bank Sustainable Cooling Initiative — The World Bank Group (WBG) is committed to 
integrate efficient and climate-friendly cooling into its country engagements and investments. The 
unprecedented and quickly growing need for cooling to adapt to climate change and how to meet this 
need while mitigating GHG emissions has become a global concern and presents a significant range of 
technical, economic and regulatory challenges. The initiative includes development of a “Global 
Roadmap Towards Sustainable Cooling by 2050,” which aims to identify the potential actions, 
pathways, policies and finance to achieve equitable and sustainable cooling. The Roadmap will also 
identify business models and entry points for WBG lending and policy work to drive action on 
sustainable and equitable cooling through its work and portfolio. The initiative also includes a dedicated 
cross-sectoral technical assistance window, the “Efficient and Clean Cooling Program”, to 
mainstream cooling in the Bank and support client countries with affordable, efficient clean cooling 
solutions, established together by the World Bank’s Montreal Protocol Unit and Energy Sector 
Management Assistance Program (ESMAP). The Program aims to scale up private and public-sector 
investment in efficient clean cooling by leveraging WBG country engagements and lending, as well as 
mobilizing financing. The Program is supported by a grant from the Kigali Cooling Efficiency Program 
(K-CEP) Window 3 for Financing. In addition, IFC has established a Sustainable Cooling Innovation 
Program, which uses IFC’s TechEmerge platform to support companies in developing countries to find 
and adopt innovative sustainable cooling solutions and business models. TechEmerge will also provide 
assistance and advisory services on technology transfer and innovation policies. 
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Box 4.2: Biarritz Pledge 

Biarritz Pledge for Fast Action on Efficient Cooling 
(22 August 2019) 

Aware that the accelerating speed of climate change presents a risk that requires strong political 
leadership to deliver fast action on a scale capable of protecting the planet, its people, its biodiversity 
and ecosystem services; 

Recognizing that the Kigali Amendment to the Montreal Protocol could prevent up to 0.4°C of warming 
by the end of the century, and that coordinated efforts to improve the energy efficiency of air 
conditioners and other cooling equipment will have additional environmental benefits, including the 
reduction of emissions, public health and food security; 

Aware of the cost of using inefficient cooling equipment, which results in wastage of the energy needed 
for development, increases air pollution, raises consumers’ operating costs, and requires additional 
capital for ensuring energy security; 

Recognizing the importance of good servicing practices in maintaining the rated energy efficiency of 
cooling equipment and in reducing refrigerant leakage from the equipment, that also contribute to the 
reduction of both direct and indirect emissions of the cooling equipment throughout their life cycle; 

We, Heads of State and Government, hereby agree to undertake immediate actions to improve efficiency 
in the cooling sector while phasing down HFC refrigerants as per the Kigali Amendment to the Montreal 
Protocol, including: 

1. To undertake ambitious measures to improve energy efficiency in the cooling sector
while phasing out HCFC and phasing down HFC refrigerants, such as developing
national cooling plans based on domestic circumstances, using energy performance
standards (MEPS) and labelling, and promoting use of good servicing practices; and
to undertake efforts that the related GHG emissions reductions are reflected in the
Nationally Determined Contributions to the Paris Agreement as per country priorities;

2. To use the state’s bulk purchasing power and relevant measures to support the phase
down of HFCs and improvements in the energy efficiency of the cooling sector
beginning in 2020, while encouraging the private sector to do the same;

3. To facilitate market access for highly efficient and affordable cooling technologies
using low- or zero-global-warming-potential (GWP) refrigerants;

4. To call on support from relevant financial institutions and funds to mobilize additional
financing for improvements in energy efficiency in the cooling sector for activities
beyond those covered under the Montreal Protocol and its Kigali Amendment;

5. To support the Efficient Cooling Initiative of the Climate and Clean Air Coalition and
related initiatives;

6. To recruit other Heads of State and Government and private sector leaders to join in
these efforts in order to gain political momentum and encourage the mobilization of
additional financial resources from public and private actors.

This pledge will contribute to cooling commitments made at the UN Climate Action Summit, and 
progress toward its realization reported at other meetings of Heads of State and Government. 

x 
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a similar frequency is around 4 ºC, whereas the climate models show a much lower trend.”). 
33 Imada, Y., Watanabe, M., Kawase, H., Shiogama, H., and Arai, M. (2019). The July 2018 high-temperature event 
in Japan could not have happened without human-induced global warming. Scientific Online Letters on the 
Atmosphere 15A, 8-12. (“This heat event caused damage to human health with 1032 deaths during [July 2018] (based 
on the statistical summary provided by the Japanese Ministry of Health, Labor and Welfare).”). 
34 Imada, Y., Watanabe, M., Kawase, H., Shiogama, H., and Arai, M. (2019). The July 2018 high-temperature event 
in Japan could not have happened without human-induced global warming. Scientific Online Letters on the 
Atmosphere 15A, 8-12. (“By comparing the event probabilities between the historical (realistic) and non-warming 
(without human impact) 6 ensemble sets, we concluded that the warm event in July 2018 would never have happened 
without human-induced climate change.”). 
35 Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M. Tyrlis, E., and Zittis, G. (2015). Strongly increasing heat 
extremes in the Middle East and North Africa (MENA) in the 21st century. Climate Change 137, 245–260. ("In the 
reference period the warmest nights are on average below 30°C, while in both scenarios they will surpass 30° by the 
middle of the century. In the RCP8.5 scenario they increase further to above 34°C by the end of the century. In the 
reference period the maximum daytime temperature during the hottest days is about 43 °C, increasing to nearly 47°C 
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	3.1 Demand for cooling is growing as population, urbanization, and wealth grow, and as global warming accelerates.
	3.2 Transitioning to high efficiency cooling can more than double climate benefits of the HFC phasedown in near-term, while also delivering economic, health, and development benefits. 



