Primer on HFCs

Fast action under the Montreal Protocol can limit growth of hydrofluorocarbons, prevent 100 to 200 billion tonnes of CO$_2$-eq by 2050, and avoid up to 0.5°C of warming by 2100

11 January 2018

Institute for Governance & Sustainable Development
Lead authors
Durwood Zaelke, Nathan Borgford-Parnell, and Stephen O. Andersen.

Contributing authors
Kristin Campbell, Xiaopu Sun, Dennis Clare, Claire Phillips, Stela Herschmann, Yuzhe Peng Ling, Alex Milgroom, and Nancy J. Sherman.

Acknowledgements
We thank our outside reviewers for their valuable contributions.

About the Institute for Governance & Sustainable Development (IGSD)
IGSD’s mission is to promote just and sustainable societies and to protect the environment by advancing the understanding, development, and implementation of effective and accountable systems of governance for sustainable development.

Beginning in 2005, IGSD embarked on a “fast-action” climate mitigation campaign that will result in significant reductions of greenhouse gas emissions and will limit temperature increase and other climate impacts in the near term. The focus is primarily on strategies to reduce non-CO$_2$ climate pollutants as a complement to cuts in CO$_2$, which is responsible for more than half of all warming. It is essential to reduce both non-CO$_2$ pollutants and CO$_2$. Neither alone is sufficient to limit the increase in global temperature to a safe level.

IGSD’s fast-action strategies include reducing emissions of short-lived climate pollutants—black carbon, methane, tropospheric ozone, and hydrofluorocarbons. They also include measures to promote energy efficiency of air conditioners and other appliances, and measures to capture, reuse, and store CO$_2$ after it is emitted, including biosequestration and mineralization strategies that turn carbon dioxide into stable forms for long-term storage while enhancing sustainable food supply.

This *HFC Primer* also is available on IGSD’s web site (http://www.igsd.org/primers/hfc/) with active links to the references and periodic updates. IGSD’s *Primer on Short-Lived Climate Pollutants* also is available on IGSD’s web site. Unless otherwise indicated, all content in the *Primer* carries a Creative Commons license, which permits non-commercial re-use of the content with proper attribution. Copyright © 2018 Institute for Governance & Sustainable Development.
Preamble

First published in 2013, IGSD’s *HFC Primer* was created to consolidate and track available and relevant scientific, technological, and policy knowledge on the issue of HFCs as well as the progress towards a phasedown under the Montreal Protocol. With regularly updated versions available on the web and in hardcopy, the *HFC Primer* quickly became an indispensable pocket reference for negotiators and policymakers working to amend the Montreal Protocol and reduce HFCs through parallel national and subnational action.

With the passage of the Kigali Amendment to phasedown HFCs in October 2016, the *HFC Primer* now serves as a record of this nearly decade-long process and details the actions of states, industry, and international community as they worked to create and adopt the Kigali Amendment. The *HFC Primer* also includes a report on the 30th Anniversary Meeting of the Parties in November 2017, including the successful replenishment and decision on energy efficiency.
Table of Contents

1. Summary 5
2. HFCs are used primarily as refrigerants and to make insulating foams 5
3. High growth rates for HFCs will cause significant global warming 6
4. Phasing down HFCs will prevent significant warming and climate impacts 8
5. Phasing down HFCs will catalyze energy efficiency and significant CO₂ reductions 11
6. Energy efficient alternatives to HFCs exist in almost every sector 13
7. Companies took action ahead of the Kigali Amendment to phase down HFCs 16
8. Nations and regions are phasing down HFCs ahead of the amendment 17
9. The Montreal Protocol has the experience and expertise to phase down HFCs 20
10. Phasing down HFCs can be achieved at a low cost 20
11. 95 Parties submitted proposals to amend the Montreal Protocol to phase down HFCs 21
12. Consensus reached to amend the Montreal Protocol in 2016 to phase down HFCs 21
13. Kigali Amendment phasedown schedule and avoided warming 31
14. Conclusion 33

Figures and Tables

Fig. 1: Projected growth in HFCs and climate forcing from emissions 6
Fig. 2: High HFC emissions confirmed by global measurements 7
Fig. 3: Forcing from HFCs could equal 20–25% of the CO₂ forcing by 2050 8
Fig. 4: Climate protection from the Montreal Protocol and Kyoto Protocol 9
Fig. 5: 21st Century warming that can be prevented by mitigating SLCPs and CO₂ 10
Fig. 6: Avoided sea-level rise at 2100 due to aggressive CO₂ and SLCP mitigation 10
Fig. 7: Payback Period versus increased efficiency for room ACs in India 13
Fig. 8: Map of countries with existing HFC regulations leading up to Kigali 18
Fig. 9: Avoided warming from the Kigali Amendment compared to business-as-usual 33

Table 1: Impact of uncontrolled HFC growth on global carbon budget 7
Table 2: 500-megawatt power plants avoided by 2030 and 2050 from efficiency 12
improvement and low-GWP refrigerant transition in split room air conditioners
Table 3: Indicative list of low-GWP alternatives to high-GWP HFCs 15
Table 4: Examples of corporate reductions of high-GWP HFCs 17
Table 5: Select national and sub-national HFC regulations 19
Table 6: Phasedown schedules for HFCs under the Kigali Amendment 32

Appendix I: List of acronyms and abbreviations 34
Appendix II: Background on IGSD’s fast-action campaign to reduce HFCs 35
and other short-lived climate pollutants
Fast action under the Montreal Protocol can limit growth of HFCs, prevent 100 to 200 billion tonnes of CO₂-eq emissions by 2050, and avoid up to 0.5°C of warming by 2100, with additional climate benefits from parallel improvements in energy efficiency of air conditioners and other appliances.

1. Summary
In November 2015, the Dubai Meeting of Parties to the Montreal Protocol agreed to launch formal negotiations on a proposed amendment to phase down hydrofluorocarbon (HFC) production and consumption, and agreed to a roadmap to work to an amendment in 2016. In December 2015, the Parties to Climate Convention (COP21) meeting in Paris agreed to an ambitious goal of limiting global warming to “well below 2°C above pre-industrial levels,” aiming for 1.5°C and for net zero emissions in the second half of the century. The Parties also agreed to “ensure the highest possible efforts” for pre-2020 mitigation, which puts further emphasis on the need for fast mitigation opportunities such as a phase down of HFCs. This Primer describes how the Montreal Protocol, with further support from national and regional laws and institutions, will quickly phase down HFC production and consumption.

HFCs are the fastest growing greenhouse gases in much of the world, increasing at a rate of 10–15% per year. They are factory-made gases that were once necessary to replace ozone-depleting substances, but today are no longer needed in most sectors, including air conditioning, refrigeration, and foam insulation. At least 95 countries have indicated their support for proposals to amend the Montreal Protocol to phase down HFCs, including those submitted by a coalition of island States (Federated States of Micronesia, Kiribati, Marshall Islands, Mauritius, Palau, the Philippines, Samoa, and Solomon Islands), India, the E.U., North American countries (the U.S., Canada, and Mexico), and the 54 members of the Africa Group.

A fast phasedown of HFCs under the Montreal Protocol by 2020 would prevent 100 to 200 billion tonnes (Gt) of CO₂-equivalent (CO₂-eq) emissions by 2050, and avoid up to 0.5°C warming by 2100, using a treaty that requires developed countries to act first, provides implementation assistance to developing countries, and has the experience and expertise to ensure that reductions are fast, effective, and efficient. In addition, an HFC phasedown under the Montreal Protocol would, as has always been the case in the past, catalyze significant energy efficiency gains in air conditioning and refrigeration systems, in the range of 30 to 60%, and significantly reduce CO₂ emissions. In the room air conditioning sector alone, improving energy efficiency of equipment by 30% while simultaneously transitioning to low-GWP alternatives could save an amount of electricity equivalent to up to 2,500 medium-sized power plants globally by 2050, while providing climate mitigation of nearly 100 Gt CO₂-eq by 2050 from this sector. Efficiency gains do not always increase retail price; however when they do, the payback period is usually short. Additional incentives would help ensure that all of the energy efficiency gains are captured as quickly as possible.

The Kigali Amendment to phase down HFCs under the Montreal Protocol will provide a level playing field for producers and consumers in lieu of a growing patchwork of regional and national regulations. Meanwhile, governments and leading companies in the E.U., Japan, U.S., and elsewhere are already taking action to phasedown HFCs.

2. HFCs are used primarily as refrigerants and to make insulating foams
HFCs are factory-made chemicals primarily produced for use in refrigeration, air conditioning, insulating foams, and aerosol propellants, with minor uses as solvents and for fire protection. HFCs were developed in order to replace chlorofluorocarbons (CFCs) that have already been phased out and hydrochlorofluorocarbons (HCFCs) that are currently being phased out under the Montreal Protocol in order to put the stratospheric ozone layer on a path to recovery. HFCs are
very powerful greenhouse gases, trapping thousands of times more heat in the atmosphere per unit of mass than CO₂. HFC-134a is the most abundant and fastest growing HFC; it has an atmospheric lifetime of 13.4 years and a global warming potential (GWP) of 1,300. A recent study found that annual emissions of HFC-134a in 1995 were 0.023 Gt CO₂-eq, but increased nearly tenfold to 0.22 Gt CO₂-eq in 2010.

According to research by NASA, HFCs are also weak ozone-depleting substances and cutting them would “reduce the HFC impacts on the stratosphere, lessen the temperature and circulation responses and resulting ozone depletion.” Although the process is more complex than that of the ozone-depleting substances (ODSs) they replace, the ozone-depleting potentials (ODPs) of some HFCs are equivalent to or larger than those of several HCFCs controlled under the Montreal Protocol.

Fig. 1: Projected growth in HFCs and climate forcing from emissions

HFCs were first commercialized in the early 1990s, and have caused only 1% of total global warming to date; however, production, consumption, and emissions of these factory-made gases are growing at a rate of 10–15% per year, which will cause a doubling every five to seven years. HFC growth is accelerating as HFCs are used as substitutes to replace HCFCs and as the demand grows for the appliances that use these refrigerants. See Figure 1. HFCs and other fluorinated greenhouse gases are the fastest growing climate pollutants in many countries, including the U.S., the E.U., Australia, China, and India.

3. High growth rates for HFCs will cause significant global warming

Atmospheric measurements confirm the high growth rates of HFCs. According to the measurements, emissions of HFCs are now twice as high as those reported to the United Nations Framework Convention on Climate Change (UNFCCC), implying that developing countries (which are not required to report emissions to the UNFCCC) now account for nearly 50% of global HFC emissions. See Figure 2. Historically, developed countries have contributed to the majority of global HFC emissions, but as temperatures, incomes, and consumption continue to rise, developing countries are beginning to represent a larger portion of total HFC emissions. For example, though the U.S. has contributed 45% of the global emissions of HFC-134a since
the growth rate of emissions from the U.S. and other developed countries has begun to slow. The growing demand of vehicles in Asia, however, is contributing to an increase in HFC-134a emissions, leading to a substantial increase in atmospheric HFC concentrations that would steadily grow without the Kigali Amendment.\(^\text{28}\)

Fig. 2: High HFC emissions confirmed by global measurements

Without fast action, HFC forcing could increase as much as thirty-fold by 2050, from a forcing of 0.012 W/m\(^2\) to as much as 0.40 W/m\(^2\).\(^\text{29}\) Continued growth in HFCs would add up to 0.1\(^\circ\)C of global average temperature rise by mid-century, increasing up to five-fold to 0.5\(^\circ\)C by 2100.\(^\text{30}\) For scenarios with a 66% probability of staying below 2\(^\circ\)C, this uncontrolled growth of HFCs would reduce the carbon budget by 30 to 60% while also making it all but impossible to achieve the 1.5\(^\circ\)C target.\(^\text{31}\) See Table 1.

Table 1: Impact of uncontrolled HFC growth on global carbon budget\(^\text{32}\)

<table>
<thead>
<tr>
<th>Temperature (T) limit relative to preindustrial levels</th>
<th>1.5(^\circ)C</th>
<th>2(^\circ)C</th>
<th>3(^\circ)C</th>
<th>4(^\circ)C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Carbon Budget</td>
<td>ND</td>
<td>340 GtC</td>
<td>870 GtC</td>
<td>1325 GtC</td>
</tr>
<tr>
<td>No HFC mitigation</td>
<td>ND</td>
<td>–30% to –60%</td>
<td>–10% to –20%</td>
<td>–5% to –15%</td>
</tr>
</tbody>
</table>

If left unchecked, by 2050, annual HFC emissions could be equivalent to 12% of annual CO\(_2\) emissions under a business-as-usual (BAU) scenario, and up to 71% of annual CO\(_2\) emissions under the Intergovernmental Panel on Climate Change’s (IPCC) strongest mitigation scenario.\(^\text{33}\) Such uncontrolled growth in HFCs would cancel much of the climate benefit achievable under
an aggressive CO₂ 450 ppm mitigation scenario. See Figure 3.

In addition to direct emissions, by 2050, the unchecked growth of HFC production and use would also produce between 39–64 Gt CO₂-eq of HFCs trapped in millions of refrigerators, air conditioners, and other cooling equipment as well as in chemical stockpiles and foams, collectively known as “HFC banks.” These HFCs banks slowly emit their stored HFCs over a few decades, further contributing to global warming, although greater efforts could be made to recover and destroy them at product end-of-life.

Fig. 3: Forcing from HFCs could equal 20–25% of the CO₂ forcing by 2050

“Clearly, the contribution of HFCs to radiative forcing could be very significant in the future; by 2050, it could be as much as a quarter of that due to CO₂ increases since 2000 if the upper range HFC scenario is compared to the median of the SRES scenario [Special Report on Emissions Scenarios, establishing a baseline scenario]. Alternatively, the contribution of HFCs to radiative forcing could be one-fifth the radiative forcing due to CO₂ increases since 2000 if the upper range HFC scenario is compared to the upper range of the SRES scenario.” UNEP (2011) HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT.

4. Phasing down HFCs will prevent significant warming and climate impacts

A 2009 study calculated that a fast phasedown of high-GWP HFCs could potentially prevent the equivalent of up to 8.8 Gt CO₂-eq per year in emissions by 2050. The proposed phasedown will avoid up to 0.5°C of warming by 2100 under the high-HFC growth scenario, and up to 0.35°C under the low-HFC growth scenario. Fast implementation that leapfrogs high-GWP HFCs and eliminates their use by 2020 could avoid an additional 50 Gt CO₂-eq (39–64 Gt CO₂-eq) that would otherwise be trapped in HFCs banks. See Figure 4, far right bar. These avoided emissions from HFCs and banks are equivalent to over 40% of the projected 307 Gt CO₂-eq (192–439 Gt CO₂-eq) of future emissions from the lifetime operation of existing power plants constructed as of 2012. Avoiding warming from HFCs is essential for staying within the long-term international goal of stabilizing global temperature rise to well below 2°C above pre-industrial temperatures by the end-of-century, while pursuing efforts to limit warming to 1.5°C. See Figure 5.
Fast mitigation of HFCs combined with mitigation of the other short-lived climate pollutants (SLCPs)—black carbon, methane, and tropospheric ozone—can avoid 0.6°C of future warming by 2050, and up to 1.5°C by end-of-century, with HFC mitigation contributing one-third of the avoided warming by end-of-century.43 See Figure 5.

Fast action to phase down all four SLCPs “would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100…. Based on our high HFC growth scenarios, the contribution to the avoided warming at 2100 due to HFC emission control is about 40% of that due to CO\textsubscript{2} emission control.”44

Reducing HFCs and the other SLCPs can significantly reduce future climate impacts, including slowing sea-level rise. Research led by Professor Veerabhadran Ramanathan at Scripps Institution of Oceanography, University of California, San Diego, calculates that cutting SLCPs can reduce the rate of sea-level rise by almost 20% by 2050 and nearly 25% by 2100; adding immediate and aggressive CO\textsubscript{2} mitigation can double the end-of-century reductions.45 Combined SLCP and CO\textsubscript{2} mitigation can reduce cumulative sea-level rise by 31% in 2100.46 Individual contributions to avoided sea-level rise by 2100 from different mitigation actions are: 29% from CO\textsubscript{2} mitigation and 71% from SLCP mitigation (13% from HFC mitigation, 17% from black carbon mitigation, and 41% from methane mitigation).47 See Figure 6. Another study showed that present-day sea levels would have been nearly 14 cm higher if CFCs and HCFCs had not been phased out until 2050.48
Fig. 5: 21st Century warming that can be prevented by mitigating SLCPs and CO₂

Figure [5] “D[epicts model simulated temperature change under various mitigation scenarios that include CO₂ and SLCPs (BC, CH₄, HFCs). BAU case (red solid line with spread) considers both high and low estimates of future HFC growth. Note this uncertainty of temperature projection related to HFC scenarios is around 0.15°C at 2100. The vertical bars next to the curve show the uncertainty of temperature projection at 2100 due to climate sensitivity uncertainty.” Yangyang Xu, Durwood Zaelke, Guus J.M. Velders, & Veerabhadran Ramanathan (2013) The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys. 13:6083–6089.

Fig. 6: Avoided sea-level rise at 2100 due to aggressive CO₂ and SLCP mitigation

Figure [6] “Avoided sea-level rise at 2100 due to aggressive mitigation of long-lived CO₂ and SLCPs. Such aggressive actions can reduce the rise in sea levels by 35 cm (uncertainty range is 17–70 cm) from the projected sea-level rise of 112 cm (49–210 cm) under a business-as-usual scenario for emissions (Representative Concentration Pathway (RCP) 6.0). The pie chart shows percentage contribution of each pollutant. Mitigation of the SLCP methane would lead to reductions in tropospheric ozone, another SLCP, and hence the pie chart includes both. As a long-lived pollutant, CO₂ plays a substantial role (blue section), but reduction in SLCPs (shown in darker colours) would lead to a larger degree of avoided sea level. (Under a more intensive business-as-usual RCP8.5 level, reductions in CO₂ would increase the share of CO₂ mitigation to 50%).” From David G. Victor, Durwood Zaelke, & Veerabhadran Ramanathan (July 2015) Soot and short-lived pollutants provide political opportunity, Nature Climate Change (based on Hu A., Y. Xu, C. Tebaldi, W. M. Washington, and V. Ramanathan (2013), Mitigation of short-lived climate pollutants slows sea-level rise, Nature Climate Change 3:730–734.)
5. Phasing down HFCs will catalyze energy efficiency and significant CO₂ reductions

In addition to the direct climate benefits from HFC mitigation, the global HFC phasedown will catalyze additional climate benefits through improvements in the energy efficiency of the refrigerators, air conditioners, and other products and equipment that use HFC refrigerants. Complementary measures to commercialize super-efficient appliances and to encourage consumers to choose these energy efficient appliances can multiply the climate benefits. These efficiency gains will significantly reduce CO₂ emissions. Depending on the application, generation mix, and fuel type, emissions from generating electricity account for between 70 and 95% of total climate emissions attributable to products using refrigerants.

The phaseout of CFCs under the Montreal Protocol, which began in the mid-1980s, catalyzed substantial improvements in air conditioning and refrigerant energy efficiency—up to 60% in some subsectors. These efficiency improvements were the result of replacing old products and equipment with a new generation of higher efficiency machines. When refrigeration and air conditioning manufacturers redesigned their systems to be CFC-free, many took the opportunity to improve the efficiency of their designs. For example, the United States Environmental Protection Agency (U.S. EPA) estimated that CFC-free chillers were up to 50% more energy efficient in the U.S., and the Global Environment Facility estimated that chillers were over 30% more efficient in India than the CFC-based machines they replaced.

Similar energy efficiency improvements are expected with the HFC phasedown. Case studies of recent demonstration projects presented by the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC) calculated energy savings of up to 15% to 30% and carbon footprint reductions of 60% to 85% for refrigeration in commercial food stores.

To ensure that developing countries are able to capture these savings, a group of donor countries pledged $27 million, and a group philanthropists provided an additional $53 million, totaling an $80 million fund to support fast implementation of the HFC amendment and energy efficiency. This contribution to the energy efficiency effort will help developing countries shift away from HFCs more rapidly while also helping to capture additional climate benefits from improved energy efficiency.

A number of global companies that are already making the transition away from HFCs report significant gains in energy efficiency. For example, the Coca-Cola Company and PepsiCo have reported energy efficiency gains of up to 47% in their new CO₂ and hydrocarbon-based refrigeration equipment over baseline HFC models. Global supermarket chain Tesco and international consumer goods company Unilever both reported a 10% gain from new hydrocarbon-based commercial refrigeration equipment and freezer cabinets over HFC-models.

Recent calculations by scientists at Lawrence Berkeley National Laboratory confirm that, in the room air conditioning sector, improving efficiency could avoid ~25 Gt of CO₂ emissions in 2030, ~33 Gt in 2040, and ~40 Gt in 2050, for cumulative mitigation up to ~98 Gt. Room air conditioning is an important target for efficiency programs due to rapidly expanding consumer cooling markets in emerging economies; an additional 700 million units will be added to the global stock of air conditioners by 2030. The market for room air conditioning is growing 10–15% per year in many emerging economies, including India, China, and Brazil, and straining often weak grids. Ownership of room air conditioners in India, for example, is projected to increase to 73% in 2030 from 30% in 2020. Air conditioning accounts for a significant percentage of peak energy load in hot climates, such as Delhi, India, where it represents 40–60% of peak electricity demand.

According to Lawrence Berkeley National Laboratory, a combined transition to low-GWP refrigerants and higher efficiency in the room air conditioning sector could produce energy savings in peak demand equal to 544–1,270 gigawatts (GW) of electricity by 2050. This would
avoid (or free up for other uses) an amount of electricity equal to the production of between 680 and 1,587 medium-sized peak-load coal power plants by 2030, and between 1,090 and 2,540 by 2050.66 Over the next 15 years, the potential energy savings in India alone from improving the energy efficiency of room air conditioning is the equivalent of up to 142 new medium-sized (500 MW) coal power plants.67 Other countries would also see significant energy savings. See Table 2. These efficiency gains also would lower the cost of operating the air conditioning, ease pressure on overloaded electricity grids, and save consumers money.68

Table 2: 500-megawatt power plants avoided by 2030 and 2050 from efficiency improvement and low-GWP refrigerant transition in split room air conditioners69

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>NUMBER OF AVOIDED 500 MW PEAK-LOAD POWER PLANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2030</td>
</tr>
<tr>
<td>Brazil</td>
<td>31–72</td>
</tr>
<tr>
<td>Chile</td>
<td>1–2</td>
</tr>
<tr>
<td>China</td>
<td>265–619</td>
</tr>
<tr>
<td>Colombia</td>
<td>4–10</td>
</tr>
<tr>
<td>Egypt</td>
<td>6–14</td>
</tr>
<tr>
<td>India</td>
<td>61–142</td>
</tr>
<tr>
<td>Indonesia</td>
<td>40–93</td>
</tr>
<tr>
<td>Mexico</td>
<td>4–9</td>
</tr>
<tr>
<td>Pakistan</td>
<td>3–6</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>4–9</td>
</tr>
<tr>
<td>Thailand</td>
<td>12–27</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>2–4</td>
</tr>
<tr>
<td>Vietnam</td>
<td>13–30</td>
</tr>
<tr>
<td>Global</td>
<td>680–1587</td>
</tr>
</tbody>
</table>

Efficiency improvements do not always cost more. Many studies have shown that, over time, the efficiency of appliances improves even as prices drop. Researchers attribute this decrease partly to economies of scale and largely to technological learning.70 Even when prices go up, consumers typically have their investment paid back early in the lifetime of their air conditioner.71 See Figure 7.
6. Energy efficient alternatives to HFCs exist in almost every sector

Low-GWP alternatives to high-GWP HFCs are widely and increasingly available. See Table 3. Alternatives to existing high-GWP HFCs fall into two basic categories: non-fluorinated substances with low GWPs and fluorinated substances with low- to mid-range GWPs. The Montreal Protocol’s Technology and Economic Assessment Panel (TEAP) uses the term “low-GWP” to refer to refrigerants with 100-year GWPs of 300 or lower while “moderate-GWP” refers to refrigerants with GWPs of 1,000 or lower. For comparison, the GWP_{100-yr} of HFC-134a, one of the most commonly used high-GWP HFC refrigerants today, is 1,300. In sectors where a lower-GWP alternative has been identified, the next steps will be to develop equipment, gain regulatory approval, address any servicing needs, and determine if a drop-in solution is available. TEAP cautions that differences in energy efficiency, refrigerant charge size, and refrigerant leak rates could determine which “low-GWP” or “moderate-GWP” alternatives would have the lowest overall impact on global warming. The most comprehensive way to evaluate the climate impact of any proposed refrigerant is to use Life Cycle Climate Performance (LCCP) methodology to calculate “cradle-to-grave” climate emissions for a particular refrigerant and application. LCCP was developed by TEAP and U.S. EPA and includes direct and indirect climate emissions, energy embodied in product materials, climate emissions during chemical manufacturing, and end-of-life loss (typically refrigerant leakage). See Section 5 for a discussion of the energy efficiency gains that will be catalyzed by an the HFC phasedown.

Commercially available non-fluorinated or “natural refrigerants” include ammonia with a GWP of near zero, hydrocarbons (e.g., propane and isobutane) with GWPs of less than four, and CO₂ with a GWP of one. Alternative fluorinated substances are primarily the low-GWP HFCs, also known as hydrofluoroolefins (HFOs), including HFO-1234yf and HFO-1234ze with IPCC Fifth Assessment Report (AR5) calculating a GWP_{100-yr} of less than one. Another alternative is HFC-32, with a GWP_{100-yr} of 677 according to the AR5. Blends of HFC-32 are also being explored as a means to further reduce GWP and flammability without sacrificing efficiency. There are other alternative methods and processes that do not involving chemical refrigerants. These are termed “not-in-kind” alternatives.
In the mobile air conditioning sector, which represents up to half of HFC emissions on a CO$_2$-eq basis, available low-GWP alternatives include HFO-1234yf, CO$_2$, and HFC-152a (AR5 GWP$_{100yr}$ ≤ 1, 1, and 138, respectively). Currently, more than a dozen vehicle manufacturers in Europe, Japan, and North America have vehicles with the low-GWP refrigerant HFO-1234yf in the global market, and in March 2016, Honeywell announced plans to work with Navin Fluorine International Limited (NFIL), an Indian manufacturer, to increase global production capacity of HFO-1234yf. Daimler announced in October 2015 that they will commercialize CO$_2$ as a low-GWP alternative for two of their vehicles, with the rest scheduled to use HFO-1234yf for the immediate future. In Norway, approximately 16% of new refrigerated truck and trailer systems were equipped with CO$_2$ cryogenic refrigeration systems in 2011; use of these systems is expected to expand further in the future.

In commercial refrigeration, globally, up to 65% of new installations are using low-GWP HFC alternatives, including CO$_2$, ammonia, and hydrocarbons, while in the domestic refrigeration sector, low-GWP hydrocarbon technology is expected to reach about 75% of global production by 2020. See Table 4 for examples of companies that have already made the switch to low-GWP alternatives in the refrigeration sector.

In the room air conditioning sector, thousands of hydrocarbon units have been sold and new production lines are coming on line each year. The Indian manufacturer, Godrej, and the Chinese manufacturer, Gree, have developed models of propane (HC-290) room air conditioners. The Godrej models are up to 11% more efficient than the minimum requirements for the 5-Star energy efficiency rating set by the Indian Bureau of Energy Efficiency. China, Japan, India, Indonesia, and other countries have commercialized products using moderate-GWP HFC-32 with high levels of operating efficiency. CO$_2$ air conditioning prototypes are also available.

In the foam sector, low-GWP alternatives include hydrocarbons, CO$_2$/water, and fibrous materials. Hydrocarbons and CO$_2$/water make up 28% to 76% of the global market for new polyurethane foam products, while fibrous materials comprise 59% of the new market for insulation in Western Europe. HFO-1233zd(E) is a liquid blowing agent that has a GWP of about one and is up to 12% more energy efficient than leading hydrocarbon alternatives, according to the companies making it. Companies are developing additional low-GWP HFC alternatives and a number of developing country Parties intend to adopt low-GWP alternatives for foam products as part of their HCFC phaseout plans.

In all major sectors, the best available low-GWP alternatives to high-GWP HFCs demonstrate at least equal, and often greater, energy efficiency than the HFCs they replace—up to 30% greater. A 2011 study for the European Commission concluded that technically feasible and cost-effective low-GWP alternatives exist for all major HFC subsectors. This analysis, which was prepared in association with industry, research institutes, and other technical experts, analyzed HFC alternatives available in 26 subsectors; all alternatives identified achieved at least equal energy efficiency and more often resulted in energy savings compared to commercially available HFC-based equipment.

The TEAP also concluded that low-GWP alternatives that achieve equal or superior energy efficiency are available in a number of sectors, stating, "hydrocarbon and ammonia systems are typically 10–30% more energy efficient than conventional high-GWP HFC systems." Tests of room air conditioning utilizing hydrocarbon refrigerants showed energy improvements of up to 20% over HFC models. Fluorinated refrigerant producers also report high levels of energy efficiency with use of their air conditioning products, particularly in hot climates. In Japan, an HFC-32 room air conditioner was awarded the 2012 Grand Prize for Excellence in Energy Efficiency and Conservation and the prestigious "Top Runner" designation as the most energy
efficient room air conditioning available.106 In the commercial refrigeration sector, supermarkets are improving energy efficiency by 15–30\% when they switch to low-GWP alternatives.107 For example, Sobeys, Canada’s second largest food retailer, found that the new CO\textsubscript{2} transcritical system used 18\% to 21\% less energy than the high-GWP HFC equipment it replaced.108

Other not-in-kind alternatives are available for some applications, such as district cooling, which relies on water chilled in high efficiency central plants to cool a large number of buildings.109 If powered by low carbon sources of energy—such as hydroelectric, wind, or solar—refrigeration and air conditioning equipment using low-GWP refrigerants can have limited climate impact.110

Table 3: Indicative list of low-GWP alternatives to high-GWP HFCs111

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>CURRENT REFRIGERANT112</th>
<th>GWP113</th>
<th>ALTERNATIVE</th>
<th>GWP114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration (Domestic)</td>
<td>HFC-134a 1,300</td>
<td></td>
<td>HC-600 (isobutene) ~3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-152a 138</td>
<td></td>
<td>HC-290 (propane) <5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFO-1234yf <1</td>
<td></td>
</tr>
<tr>
<td>Refrigeration (Commercial & Industrial)</td>
<td>HCFC-22 1,760</td>
<td></td>
<td>HC-600 (isobutene) ~3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-407C 1,774</td>
<td></td>
<td>R-744 (CO\textsubscript{2}) 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-134a 1,300</td>
<td></td>
<td>R-717 (ammonia) 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-404a 3,943</td>
<td></td>
<td>HFCs and HFC blends <1-1,600</td>
<td></td>
</tr>
<tr>
<td>Air Conditioners (Room)</td>
<td>HFC-410A 1923</td>
<td></td>
<td>HC-290 (propane) <5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCFC-22 1,760</td>
<td></td>
<td>HFC-32 677</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-407C 1,774</td>
<td></td>
<td>HFC/HFC blends emerging</td>
<td>~350</td>
</tr>
<tr>
<td>Air Conditioners (Commercial)</td>
<td>HFC-134a 1,300</td>
<td></td>
<td>HFC-1233zd <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCFC-22 1,760</td>
<td></td>
<td>HFC-1234ze <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCFC-123 79</td>
<td></td>
<td>HFC/HFC blends emerging</td>
<td>400-500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFO-1234yf <1</td>
<td></td>
</tr>
<tr>
<td>Mobile Air Conditioners</td>
<td>HFC-134a 1,300</td>
<td></td>
<td>HFO-1234yf <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HC-152a 138</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R-744 (CO\textsubscript{2}) 1</td>
<td></td>
</tr>
<tr>
<td>Foams</td>
<td>HFC-227ea 3,220</td>
<td></td>
<td>HCs <5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-142b 1,980</td>
<td></td>
<td>CO\textsubscript{2}/water 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-245fa 1,030</td>
<td></td>
<td>HFO-1234ze <1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCFC-22 1,810</td>
<td></td>
<td>Methyl formate <25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFC-134a 1,300</td>
<td></td>
<td>HFO-1336mzz-Z 2</td>
<td></td>
</tr>
</tbody>
</table>

HFC alternatives are further elaborated in Suely Carvalho, Stephen O. Andersen, Duncan Brack, & Nancy J. Sherman, Alternatives to High-GWP Hydrofluorocarbons, IGSD WORKING PAPER. (November 2014).

Energy efficient alternatives are important for all countries, particularly those with high ambient air temperatures with long and often humid seasons, including countries currently choosing replacements for HCFCs currently being phased out under the Montreal Protocol.115 A study for the European Commission shows that, in countries with high ambient air temperatures, almost 70\% of sectors currently using HCFCs can leapfrog past high-GWP HFC refrigerants directly to low-GWP alternatives with equal or better energy efficiency.116 The same study notes that other low-GWP alternatives are in development and expected to be ready to replace the remaining uses by 2025.117 Tests by the U.S. Oak Ridge National Laboratory demonstrated that many low-GWP alternatives perform with similar cooling capacity and efficiency for mini-split air conditioners operating in high ambient temperature conditions.118 A report released in 2016 by the U.S. Oak
Ridge National Laboratory demonstrated that low-GWP alternatives to HFCs perform just as well and sometimes even better for rooftop air conditioners operating at the high ambient temperatures, with further potential for improvement through engineering optimization. The amendment to phase down HFCs under the Montreal Protocol will further accelerate development and deployment of additional climate-friendly alternatives.

7. Companies took action ahead of the Kigali Amendment to phase down HFCs

There is strong business support for phasing down HFCs. The Consumer Goods Forum (CGF), a global network of over 400 retailers, manufacturers, and service providers from over 70 countries, pledged to begin phasing down HFCs by 2015. The Forum is now discussing “how best to drive scale-up beyond 2015, including the possibility of a new resolution.” Other industry groups support reducing HFCs under the Montreal Protocol, including the Air-Conditioning, Heating and Refrigeration Institute; the European Fluorocarbon Technical Committee; and Refrigerants, Naturally! The Alliance for Responsible Atmospheric Policy, whose nearly 100 members include Trane, Whirlpool, Sub-Zero, and Mitsubishi, also supports a global phasedown of high-GWP refrigerants. On 15 October 2015, sixteen U.S. and multinational companies made a variety of pledges to phase down and replace HFCs and to commercialize alternatives.

Individual companies across the value chain are developing and implementing alternative refrigerants. The CCAC has produced a series of case studies demonstrating HFC alternatives developed and utilized by supermarket industry leaders, including Carrefour, H-E-B, and Supermercado.

On the retailer and point-of-sale side, the member companies of Refrigerants, Naturally!, which includes Coca-Cola, PepsiCo, Red Bull, and Unilever, are taking action to eliminate the use of HFCs within their respective companies. Coca-Cola began using HFC-free insulation for new beverage vending equipment, which reduced direct HFC emissions by 75%, identified a feasible natural refrigerant, and pledged to eliminate HFCs in all new equipment by 2015. PepsiCo, Red Bull, Unilever, and Carrefour started installing a substantial amount of natural refrigerant point-of-sale equipment. Individual companies in the CGF, including Wal-Mart, Nestlé, Sobeys, Supervalu, and Tesco, are purchasing alternative refrigerant equipment, converting existing equipment, and improving efficiency while reducing leakage. In 2014, Whirlpool converted all foam blowing agents used in the manufacture of refrigerators and freezers sold in North America from HFC-245fa (AR5 GWP100-yr = 858) to HFO-1233zd(E) (GWP100-yr = ~1), a reported reduction in GWP of 99.9%. See Table 4 for a summary of several of these measures.

In September 2016, over 500 national and international companies and organizations that produce and consume HFCs, along with sub-national governments, called for an ambitious amendment to the Montreal Protocol that includes “an early first reduction step for Article 2 [developed] countries and a freeze date for Article 5 [developing] countries that is as early as practicable”, and declared their “intent to work to reduce the use and emissions of high-global-warming-potential HFCs and transition over time to more sustainable alternatives in a manner that maintains or increases energy efficiency.”
Table 4: Examples of corporate reductions of high-GWP HFCs

<table>
<thead>
<tr>
<th>COMPANIES</th>
<th>ACHIEVEMENTS & GOALS</th>
</tr>
</thead>
</table>
| PepsiCo\(^{139}\) | 240,000 HFC-free units
HFC-free equipment in 30 countries with 100% natural refrigerants in Turkey since 2009 and Russia since 2011 |
| The Coca-Cola Company\(^{140}\) | 1,700,000 HFC-free units as of January 2016
100% HFC-free insulating foam for new refrigeration equipment
100% HFC-free new cold drink equipment purchases as of the end of 2015 |
| Red Bull\(^{141}\) | 457,000 ECO-Coolers (more than 50% of all units) as of the end of 2013
Procurement 100% hydrocarbon since 2010 |
| Unilever\(^{142}\) | 800,000 HFC-free freezers in 2012
Working with their subsidiary Ben & Jerry’s to roll out hydrocarbon ice cream freezers in U.S. |
| McDonalds\(^{143}\) | 3,300 HFC-free meat freezers, frozen food storage, reach-ins & salad refrigerated display cases 2012. Investing in ammonia industrial refrigeration in U.S. |
| Nestlé\(^{144}\) | 11,000 hydrocarbon ice cream freezers in Europe, Australia, Spain, Malaysia, Chile, and the U.S.
Nestlé uses natural refrigerants in 90% of its industrial food processing refrigeration |
| Heineken\(^{145}\) | 130,000 hydrocarbon refrigerated beverage displays
Aiming for 50% reduction in carbon footprint of installed refrigerators by 2020 |
| Sobeys\(^{146}\) | “Natural Refrigerant Commitment” requires that CO\(_2\) refrigeration systems are installed in all new full-service stores |
| Whirlpool\(^{147}\) | HFO-1233zd(E) in all U.S. refrigerator and freezer manufacturing facilities by end of 2014
Equivalent to removing more than 400,000 cars from the road |

8. Nations and regions are phasing down HFCs ahead of the amendment

Support to phase down HFCs has been growing at the national and regional levels. See Figure 8 and Table 5. China, the U.S., and the E.U., the top three global consumers of HFCs, had all announced new policies and regulations to control and reduce HFC emissions.\(^{148}\) In May 2014, the State Council of China announced they would strengthen their management of HFC emissions and accelerate the destruction and replacement of HFCs as part of the action plan to implement the energy conservation and emission reduction targets of the 12\(^{th}\) Five-Year Plan.\(^{149}\) China’s action plan is expected to reduce HFC emissions by 0.28 Gt CO\(_2\)-eq by 2015.\(^{150}\) The E.U. HFC regulations (“F-Gas Directive”), which went into effect on 1 January 2015, will phase down HFCs by 79%, from the baseline 2009–2012 levels, by 2030.\(^{151}\) In addition, as part of its regulatory regime to control HFCs, the European Directive on mobile air conditioning systems requires the use of refrigerants with GWPs less than 150; new type vehicles sold in the E.U. are covered as of 1 January 2013, and all vehicles sold in the E.U. will be covered by 2017.\(^{152}\) Global adoption of the best available technologies and alternatives required under existing E.U., U.S., or Japanese regulations would reduce cumulative (2015–2050) HFC emissions by 50% or more compared to the proposed North American HFC Amendment.\(^{153}\)
The U.S. had also begun addressing HFCs at national and state levels. In June 2013, President Obama announced domestic action on HFCs as part of his Climate Action Plan. Both the U.S. House and Senate have introduced bills that would require the establishment of a U.S. task force to reduce HFCs and other super climate pollutants using existing authorities. In March 2015, the President issued Executive Order 13693, which requires federal agencies to reduce direct GHG emissions by 40% by 2025 including through purchasing sustainable products identified by SNAP. In May 2015, the U.S. Department of Defense, NASA, and the General Services Administration proposed a rule that would direct the U.S. government to procure alternatives to high-GWP HFCs. In July 2015, the U.S. EPA issued a final rule banning and otherwise restricting various high-GWP HFCs in specific uses under the “Significant New Alternatives Policy Program” (SNAP) of the Clean Air Act. Finally, the U.S. currently provides manufacturers of cars and light trucks the opportunity to earn credits toward their compliance with CO2 emission standards and Corporate Average Fuel Economy (CAFE) standards by employing HFC alternative refrigerants in mobile air conditioning systems for model year 2012–2016 vehicles.

In September 2016, the U.S. EPA approved additional climate friendly alternatives and also revoked approval for several of the most potent HFCs. In addition, the U.S. EPA strengthened its refrigeration management program to include HFCs and other non-ozone depleting substitute refrigerants, while also reducing the threshold that triggers the duty to repair leaking equipment, requiring quarterly leak inspections or continuous monitoring devices for refrigeration and air-conditioning equipment that have exceeded the threshold leak rate, and requiring recordkeeping for refrigerant recovered during system disposal.

In 2009, California passed refrigerant regulations expected to reduce F-gas emissions by 25% by 2020. In 2014, California passed a law that requires the California Air Resources Board (CARB) to develop a comprehensive strategy to reduce emissions of HFCs and other SLCPs by 1 January 2016. CARB released its initial draft SLCP Reduction Strategy for public comment September 2015, calling for more than 40% reduction in HFC emissions by 2030; the final draft of the Strategy was released in March 2017. Beginning in 2018, HFCs will also be regulated according to a statewide cap-and-trade system. California has also forged intrastate and international agreements concerning HFCs.
Table 5: Select national and sub-national HFC regulations

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Taxes, Levies, Fees</th>
<th>Economic and Market-Based Incentives</th>
<th>Prohibition/Authorization</th>
<th>Required Practices</th>
<th>Voluntary Initiatives/Education Programs</th>
<th>Import/Export</th>
<th>Reporting/Recordkeeping Requirements</th>
<th>Prioritization of Climate-Friendly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Europe and Central Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>X*</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Macedonia</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Montenegro</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Netherlands</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Norway</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Switzerland</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Paraguay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>California</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Island Countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>New Zealand</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Seychelles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The CCAC is also targeting HFCs as part of its global effort to scale up action to reduce SLCPs. Many CCAC state partners already have existing HFC policies, and six are developing national-level inventories of HFCs and identifying policies and measures to avoid the growth of high-GWP HFCs (Bangladesh, Chile, Colombia, Ghana, Indonesia, and Nigeria).

9. **The Montreal Protocol has the experience and expertise to phase down HFCs**

At the international level, there is now a consensus that HFCs can be most effectively controlled through the phasedown of their *production and consumption* under the Montreal Protocol as a complement to controls on *emissions* under the UN Framework Convention on Climate Change (UNFCCC). The Montreal Protocol has the experience and expertise to ensure a fast, effective, and efficient phasedown of HFCs, which are in the same family of gases, have similar chemical properties, and are used in the same sectors as the CFCs already phased out and the HCFCs currently being phased out. Because all CFCs and HCFCs are also greenhouse gases, between 1990 and 2010 the Montreal Protocol reduced CO₂-eq emissions nearly twenty times more than the 5 to 10 Gt CO₂-eq reduction goal of the first commitment period of the Kyoto Protocol. See Figure 4. Sophisticated statistical analysis confirms that the successful phaseout of CFCs and related chemicals by the Montreal Protocol, along with reductions of methane, slowed climate change and contributed to a lower rate of global warming since the early 1990s.

The Montreal Protocol has universal membership and provides robust implementation of the principle of “common but differentiated responsibilities.” This includes having developed country Parties undertake control measures first, followed by typical grace periods of 10 to 19 years before developing country Parties are subject to control measures, with funding for the agreed incremental cost of the developing country phaseout provided by the developed country Parties through the Multilateral Fund (MLF). The MLF has played a key role in achieving cost-effective emissions reductions. Since it was established in 1991, the MLF has provided more than US$3.3 billion in funding. At the 26th Meeting of the Parties (MOP) of the Montreal Protocol, in 2014, the Parties agreed to a MLF replenishment of just over US$500 million for 2015–2017.

The Montreal Protocol has an in-depth understanding of all sectors it finances, including detailed knowledge of technical options. The Montreal Protocol also supports institutional strengthening for all 147 developing country Parties. The combination of these features has allowed all Parties to comply with the control measures; to date, the Parties have phased out 98% of nearly 100 damaging chemicals.

The orderly and transparent schedule for phasing out chemicals under the Montreal Protocol allows time for markets to innovate and adjust, often resulting in significant cost and technical efficiencies. The Montreal Protocol also provides “essential use” and “critical use” exemptions that allow continued use of a chemical when environmentally acceptable alternatives are not yet available.

In sum, the Montreal Protocol is able to provide fast, effective, and efficient reductions of upstream production and consumption of HFCs, while downstream emissions will remain with the UNFCCC, as will measurement and reporting.

10. **Phasing down HFCs can be achieved at a low cost**

Historically the Montreal Protocol achieved significant reductions by phasing out production and consumption of ozone-depleting greenhouse gases at low cost. Between 1991 and 2010, the MLF paid out US$2.4 billion and achieved an estimated 188–222 Gt CO₂-eq in emissions reductions from the phaseout of CFCs and other fluorinated greenhouse gases, equivalent to less than US$0.01 per tonne of CO₂ reduced.
Analysis by the TEAP calculated that a phasedown of HFCs in the refrigeration and air conditioning sectors beginning in 2020 would cost the MLF 1.5 to 2 times more than the current funding for the ongoing HCFC phaseout.\(^{196}\) This would reduce HFC demand by 9.5 Gt CO\(_2\)-eq between 2020 and 2030, and would cost the MLF USD$0.22–0.29 per tonne of CO\(_2\)-eq.\(^{197}\) Another study estimated that the total incremental cost of phasing down the use of high-GWP HFCs through 2050 would be €5–11 billion, which is less than €0.10 per tonne of CO\(_2\)-eq or “ten [MLF] replenishing periods with funding in the range of [€]500 to 1000 million from freeze to 2050.”\(^{198}\)

According to the TEAP, delaying the start date of the phasedown in the refrigeration and air conditioning sectors from 2020 to 2025, would increase the total cost to the MLF for converting manufacturing by 40% and costs for servicing by 250%.\(^{199}\) This five-year delay would reduce the climate benefit\(^{200}\) and increase the cost per tonne of CO\(_2\)-eq by as much as 900%.\(^{201}\)

The faster the world phases down high-GWP HFCs the less of these potent chemicals will be embedded in millions of products and equipment and thus gradually released over the course of several years or decades. By moving fast, the world can avoid the buildup of 50 Gt CO\(_2\)-eq (39–64 Gt CO\(_2\)-eq of unnecessary HFC banks by 2050,\(^{202}\) which can cost as much as US$35 or more per CO\(_2\)-eq tonne to collect and destroy compared to less than a dollar per tonne to avoid their production and consumption entirely.\(^{203}\)

11. **95 Parties submitted proposals to amend the Montreal Protocol to phase down HFCs**

Recognizing the opportunity presented for fast and effective phasing down of HFCs through the Montreal Protocol, starting in 2009 the Federated States of Micronesia proposed an amendment to phase down high-GWP HFCs,\(^{204}\) with the U.S., Canada, and Mexico following with a similar amendment in 2010.\(^{205}\) Both proposals would reduce 85–90% of HFC production and consumption and provide climate mitigation equivalent to more than 100 Gt CO\(_2\) emissions by 2050.\(^{206}\) In April 2015, the North American group submitted their newest proposal, dated 8 March 2015.\(^{207}\) On 17 April 2015, India submitted its own proposal to phase down high-GWP HFCs under the Montreal Protocol, reversing several years of opposition.\(^{208}\) On 20 April 2015, the 54 members of the Africa Group submitted an informal proposal in the form of a Conference Room Paper.\(^{209}\) On 30 April 2015, the E.U. submitted a proposal on behalf of its 28 member States.\(^{210}\) At the same time, the Federated States of Micronesia, the first country to submit a proposal in 2009, submitted a revised proposal along with seven other Pacific Island States as co-sponsors—Kiribati, Marshall Islands, Mauritius, Palau, the Philippines, Samoa, and Solomon Islands.\(^{211}\) All four amendment proposals were resubmitted in 2016 following the OEWG 37\(^{212}\) and were consolidated prior to the OEWG 38 into a spreadsheet to allow side-by-side comparison of the text.\(^{213}\)

12. **Consensus reached to amend the Montreal Protocol in 2016 to phase down HFCs**

At the MOP 27 in November 2015 the Parties agreed to “work within the Montreal Protocol to an HFC amendment in 2016.”\(^{214}\) Immediately prior to the MOP, the 36\(^{th}\) Open-ended Working Group (OEWG) decided to form a contact group that would sort out issues relating to the feasibility of phasing down HFCs and ways to manage HFCs.\(^{215}\) Negotiations in the contact group produced an agreement to work to the HFC amendment in 2016 with meetings held throughout 2016.\(^{216}\) This included two OEWGs. The first was held 4 to 8 April in Geneva, Switzerland, at the end of which the Parties suspended the meeting and agreed to resume for two additional days prior to the next meeting. The Parties resumed OEWG 37 from 15 to 16 July in addition to holding OEWG 38 from 18 to 21 July in Vienna, Austria. This was followed by an extraordinary MOP from 22 to 23 July in Vienna, Austria. OEWG 38 was suspended and resumed on 8 October 2016, prior to the MOP 28.\(^{217}\) The regular MOP took place from 10 to 15
October 2016 in Kigali, Rwanda and resulted in the passage of the Kigali Amendment.218

The following section summarizes key policy developments along the way to the adoption, ratification, and implementation of the Kigali Amendment:

2009

10 July 2009, in L’Aquila, Italy, the leaders of the G8 recognized “that the accelerated phase-out of HCFCs mandated under the Montreal Protocol is leading to a rapid increase in the use of HFCs, many of which are very potent GHGs,” and committed to “work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework.”219

4 to 8 November 2009, at the MOP 21, the Federated States of Micronesia and Mauritius submitted a proposed amendment to the Montreal Protocol to regulate and phasedown HFCs under the treaty.220

November 2009, 39 countries signed the Declaration on High-GWP alternatives to ODSs encouraging the Parties to the Montreal Protocol to “urgently consider phasing-down the production and consumption of high-GWP alternatives,” including HFCs, and “take appropriate measures … as soon as practicable.”221

2010

8 to 12 November 2010, at the MOP 22 in Bangkok, Canada, Mexico, and the United States submitted a proposed amendment to the Montreal Protocol to phasedown HFCs.222 The Federated States of Micronesia again submitted a proposed amendment to control HFCs under the Montreal Protocol,223 to which the Philippines submitted a letter of support.224

By the end of 2010, 108 Parties to the Montreal Protocol signed the Bangkok Declaration, calling for the use of low-GWP alternatives to CFCs and HCFCs.225

2012

17 February 2012, along with the UNEP, the U.S., Mexico, Canada, Ghana, and Bangladesh launched the CCAC to catalyze major reductions in SLCPs with an initial focus on black carbon, methane, and HFCs.226

19 May 2012, the leaders of the G8 in Camp David, U.S., agreed to join the CCAC and develop “strategies to reduce short term pollutants—chiefly methane, black carbon, and hydrofluorocarbons.”227

22 June 2012, at the conclusion of the Rio + 20 UN Conference on Sustainable Development, more than one hundred heads of State adopted the conference declaration, The Future We Want, recognizing the climate threat from HFCs and calling for the gradual phasedown of their production and consumption; the UN General Assembly adopted the declaration by resolution on 11 September 2012.228

2013

19 April 2013, China agreed to completely phase out HCFCs over the next 17 years, which is expected to cut the equivalent of 8 Gt CO2 at a total cost of $385 million, or about $0.05 per tonne.229 The Montreal Protocol’s HCFC phaseout will eliminate HCFC production from emissive uses in developed country Parties by 2030 and in developing country Parties by 2040, and this agreement will give China the opportunity to choose low-GWP alternatives in lieu of HFCs to ensure that the climate benefits are realized.230

Through May 2013, 112 Parties joined the even stronger Bali Declaration on Transitioning to Low Global Warming Potential Alternatives to Ozone Depleting Substances.231
15 May 2013, the Arctic Council countries, including the Russian Federation, issued the Kiruna Declaration in which they “Urge the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer to take action as soon as possible, complementary to the UNFCCC, to phase-down the production and consumption of hydrofluorocarbons, which contribute to the warming of the Arctic region.”232

8 June 2013, China’s President Xi Jinping and U.S. President Barack Obama agreed to “work together and with other countries to use the expertise and institutions of the Montreal Protocol to phase down the consumption and production of hydrofluorocarbons (HFCs).”233

25 June 2013, U.S. President Obama announced his Climate Action Plan, which includes phasing down HFCs under the Montreal Protocol, as well as taking action in the U.S. to control HFCs.234

26 June 2013, at the mid-year OEWG 33, in Bangkok, the Parties established a formal Discussion Group to discuss the management of HFCs under the Protocol.235

28 June 2013, the BASIC countries (Brazil, South Africa, India, and China) noted in their Joint Statement that they would “work multilaterally to find an agreed way” to address HFCs:

“Ministers emphasized that HFCs are greenhouse gases covered under the UNFCCC and its Kyoto Protocol and shall accordingly be addressed in accordance with its principles and provisions. They agreed to work multilaterally to find an agreed way forward on this issue.”236

10 July 2013, the U.S.-China Climate Change Working Group agreed to work together to “implement the agreement on hydrofluorocarbons (HFCs) reached by President Obama and President Xi at their meeting on 9 June 2013, in Sunnylands, California.”237

12 July 2013, fourteen Pacific small island developing states (SIDS) called for action under the Montreal Protocol to phase down HFCs. In the Nadi Outcome Document of the Pacific SIDS Regional Preparatory Meeting for the Third International Conference on Small Island Developing States, these fourteen nations “agreed that the Montreal Protocol be utilized to undertake the gradual phasedown of production and consumption of HFCs called for in the Rio + 20 outcome document, The Future We Want.”238

3 September 2013, the 33 State partners of the CCAC and the European Commission agreed to “work toward a phasedown in the production and consumption of HFCs under the Montreal Protocol.” The Coalition’s State partners also agreed to “adopt domestic approaches to encourage climate-friendly HFC alternative technologies,” and to “work with international standards organizations to revise their standards to include climate-friendly HFC alternatives.”239

6 September 2013, on the margins of the G20 Summit in St. Petersburg, China’s President Xi Jinping and U.S. President Barack Obama agreed to open formal negotiations on the amendment to phase down HFCs under the Montreal Protocol:

“We reaffirm our announcement on June 8, 2013 that the United States and China agreed to work together and with other countries through multilateral approaches that include using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while continuing to include HFCs within the scope of UNFCCC and its Kyoto Protocol provisions for accounting and reporting of emissions. We emphasize the importance of the Montreal Protocol, including as a next step through the establishment of an open-ended contact group to consider all relevant issues, including financial and technology support to Article 5 developing countries, cost effectiveness, safety of substitutes, environmental benefits, and an amendment. We reiterate our firm commitment to work together and with other countries to agree on a
6 September 2013, the leaders of the world’s twenty largest economies, as well as heads of State from six invited observer States, expressed their support in the St. Petersburg G20 Leaders’ Declaration for initiatives that are complementary to efforts under the UNFCCC, including using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while retaining HFCs within the scope of the UNFCCC and its Kyoto Protocol for accounting and reporting of emissions:

“We are committed to support the full implementation of the agreed outcomes under the United Nations Framework Convention on Climate Change (UNFCCC) and its ongoing negotiations…. We also support complementary initiatives, through multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs), based on the examination of economically viable and technically feasible alternatives. We will continue to include HFCs within the scope of UNFCCC and its Kyoto Protocol for accounting and reporting of emissions.”241

16 September 2013, Ministers representing BASIC countries agreed that HFCs should be dealt with through relevant multilateral fora guided by the principles and provisions of the UNFCCC:

“Ministers agreed that hydrofluorocarbons (HFC) should be dealt with through relevant multilateral fora, guided by the principles and provisions of UNFCCC and its Kyoto Protocol. The availability of safe and technically and economically viable alternatives and the provision of additional financial resources by developed countries should also be taken into account.”242

27 September 2013, India’s Prime Minister Manmohan Singh and U.S. President Barack Obama agreed to immediately convene discussions of phasing down HFCs under the Montreal Protocol, leaving accounting and reporting of emissions in the UNFCCC:

“The two leaders agreed to immediately convene the India-U.S. Task Force on hydrofluorocarbons (HFCs) to discuss, inter alia, multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the consumption and production of HFCs, based on economically-viable and technically feasible alternatives, and include HFCs within the scope of the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol for accounting and reporting of emissions…..”243

The U.S.-India climate cooperation also will include a focus on improving the efficiency of air conditioning in India, which has the potential to avoid as many as 120 large power plants by 2030:

“Space Cooling Efficiency Collaboration: Demand for space cooling—primarily for air conditioners—constitutes a large portion of peak electricity demand in India. Air conditioners could add as much as 140 GW to peak load by 2030 and management of the peak contribution is critical for maintaining supply security and avoiding load shedding. The new U.S.-India Collaboration on Smart and Efficient Air Conditioning and Space Cooling is intended to advance policies and innovation to drive mass deployment and rapid uptake of high-efficiency cooling equipment and technologies to capture significant energy savings, potentially avoiding the need to build as many as 120 large power plants.”244

See Section 4 for a further discussion of benefits of super-efficient room air conditioning.
21 to 25 October 2013, at the MOP 25, in Bangkok, countries continued to make progress on an international agreement to phase down HFCs under the Montreal Protocol. Significantly, the Africa Group, including South Africa, announced its support for “formal negotiations to enable the amendment process.” Jordan also demonstrated support for discussion of the amendment proposals, calling them “logical and well understood.” Delegates reconvened the formal Discussion Group on HFC Management, this time with a broader mandate that included consideration of the high-level agreements to phase down HFCs made in preceding months. The formal Discussion Group met several times and proposed several ways forward for action on HFCs, including holding extra working meetings in 2014 to consider the amendment proposals. Brazil and China continued to engage constructively as well, and both played an important role in writing a detailed request to the TEAP to conduct additional research on HFCs and their alternatives. India, along with several other countries, expressed concern over whether technology was available and whether developed countries would be willing to pay for the transition in developing countries as required by the Montreal Protocol. These and other concerns would be addressed in 2014 as the amendment negotiations move forward.

19 November 2013, at the 21st E.U.-Japan summit in Tokyo, the E.U. and Japan emphasized the importance of the HFC phasedown under the Montreal Protocol:

“[T]hey underlined the contribution of international cooperative initiatives to the additional mitigation effort to narrow the existing gap between emission reduction pledges and what is needed according to science. In particular, they stressed the need for rapid progress on the phasedown of HFCs and for its close consideration as one of the issues to be addressed in the context of the Montreal Protocol.”

5 December 2013, the U.S. and China reaffirmed the agreements on HFCs by President Barack Obama and President Xi Jinping from 8 June 2013 and 6 September 2013:

“Today, both countries reaffirmed the agreements reached by leaders regarding phasing down the production and consumption of the highly potent greenhouse gas hydrofluorocarbons (HFCs) using the expertise and institutions of the Montreal Protocol and to take next steps in the process, including the establishment of an open-ended contact group in the Montreal Protocol.”

2014

11 February 2014, following President Hollande’s State visit with President Obama, the White House emphasized that “France is also an important partner in the global effort to phase down production and consumption hydrofluorocarbons (HFCs) using the institutions and expertise of the Montreal Protocol.”

19 February 2014, at the conclusion of the North American Leaders’ Summit, Canada’s Prime Minister Stephen Harper, Mexico’s President Peña Nieto, and U.S. President Barack Obama agreed to "intensify our efforts to promote an amendment to the Montreal Protocol to phase down production and consumption of climate-damaging hydrofluorocarbons (HFCs).”

7 March 2014, U.S. Secretary of State John Kerry instructed Chiefs of Mission and all other State Department staff to make climate change a priority across all platforms, domestically and internationally, including efforts to enhance the Montreal Protocol, the Major Economies Forum, Clean Energy Ministerial, and the CCAC, as well as efforts to conclude a new climate agreement applicable to all countries by 2015 to take effect in 2020.

26 March 2014, the leaders of the E.U. and the U.S. issued a Joint Statement affirming their commitment to phasing down HFCs through the Montreal Protocol, and their commitment
“to ambitious domestic action to limit HFC use and emissions.”

31 March 2014, the leaders of the E.U. and China issued a Joint Statement announcing that they “will cooperate on taking domestic action to avoid or reduce the consumption of HFCs and to work together to promote a global phase down of these substances.”

5 June 2014, the leaders of the G7 countries reaffirmed their commitment to phase down high-GWP HFCs under the Montreal Protocol:

“We will work together and with others to phase down the production and consumption of hydrofluorocarbons (HFC) under the Montreal Protocol. We will also continue to take action to promote the rapid deployment of climate-friendly and safe alternatives in motor vehicle air-conditioning and we will promote public procurement of climate-friendly HFC alternatives.”

10 July 2014, U.S. and China reaffirmed their commitment to phase down the production and consumption of HFCs.

14 to 18 July 2014, at the OEWG 34, the majority of countries expressed support for starting a formal contact group to negotiate the terms for the HFC phasedown. Some parties continued their opposition, including several Gulf States, so parties launched a discussion group to address issues raised by these reluctant parties. The same issues were addressed during a two-day HFC management seminar organized by the Montreal Protocol Secretariat on 11 to 12 July 2014; the seminar was attended by more than 400 country delegates; scientific, technical, and legal experts; and industry and environmental observers.

16 to 17 July 2014, at the Working Group meeting of the CCAC in Paris, France, the CCAC announced its plan to launch “a campaign with key countries and leading industries to reduce hydrofluorocarbons” at the UN Secretary-General’s Climate Summit in New York in September.

23 September 2014, on the occasion of the UN Secretary-General’s Climate Summit, 33 state partners of the CCAC issued a Joint Statement supporting the phasedown of the production and consumption of HFCs under the Montreal Protocol. The state partners were joined by numerous organizations and companies including: the CARB, the World Meteorological Organization, the Coca-Cola Company, Danfoss, and the member companies of Refrigerants, Naturally!.

30 September 2014, India's Prime Minister Narendra Modi and U.S. President Barack Obama agreed on the need to take urgent action to reduce consumption and productions of HFCs under the Montreal Protocol.

17 to 21 November 2014, at the MOP 26, in Paris, countries continued to make progress in their negotiations to phase down production and consumption of HFCs. In particular, China and India indicated their willingness to consider how to move forward to discuss the HFC phasedown. In addition to the regular OEWG meeting on 13 to 17 July 2015, the Parties agreed to hold an extra-ordinary three-day OEWG on 22 to 24 April, with a back-to-back two-day workshop on HFC management issues, with emphasis on the challenges of high ambient temperature countries and on energy efficiency. The Parties also agreed to replenish the MLF with $507.5 million over the next three years.

2015

25 January 2015, India's Prime Minister Narendra Modi and U.S. President Barack Obama agreed to make "concrete progress this year” to cut HFCs under the Montreal Protocol.

6 March 2015, at the conclusion of the 15th Session of the African Ministerial Conference on the Environment in Cairo, Ministers and delegates from 54 countries of Africa urged all member
States to use the Montreal Protocol to phase down the production and use of HFCs, and requested all to work towards a “contact group” to begin formal negotiations this year.264

April 2015, Canada, Mexico, and the U.S. submitted their newest proposal to phase down HFCs under the Montreal Protocol.265 The proposal would reduce cumulative HFC emissions between 2019 and 2050 by between 90 and 111.5 Gt CO2-eq, “which is equal to roughly two years of emissions of all anthropogenic greenhouse gases at current emission levels.”266

17 April 2015, India submitted a proposal to phase down high-GWP HFCs under the Montreal Protocol.267 The proposal called for the continued “use of HFCs and blends of HFCs as transitional substances for phase-out of HCFCs wherever low-GWP/zero-GWP alternatives are not available,” and a 15-year grace period before developing countries begin phasing down HFCs.268

20 April 2015, Senegal and Zimbabwe, on behalf of the 54 members of the Africa Group, submitted an informal proposal in the form of a Conference Room Paper requesting the establishment of a contact group at the OEWG 36 in July to “consider proposals to amend the Montreal Protocol, including those that have been submitted for consideration by the Meeting of the Parties.”269

24 April 2015, at the conclusion of the OEWG 35, the Parties agreed to hold additional inter-sessional meetings, “with a view to the establishment of a contact group” at the regularly scheduled OEWG in Paris in July.270 A two-day seminar on HFC management was presented by the Montreal Protocol Secretariat on 20 to 21 April 2015.271

30 April 2015, the E.U. submitted a proposal on behalf of its 28 member States for an amendment to the Montreal Protocol to phasedown HFCs.272

30 April 2015, the Federated States of Micronesia, the first country to submit a proposal in 2009, submitted a revised proposal, along with seven other Pacific Island States as co-sponsors—Kiribati, Marshall Islands, Mauritius, Palau, the Philippines, Samoa, and Solomon Islands.273

8 June 2015, the leaders of the G7 countries pledged to “continue our efforts to phase down hydrofluorocarbons (HFCs) and call on all Parties to the Montreal Protocol to negotiate an amendment this year [2015] to phase down HFCs and on donors to assist developing countries in its implementation.”274

12 to 13 June 2015, a group of invited parties participated in an informal inter-sessional consultation in Vienna, Austria on the feasibility and ways of managing HFCs, where they discussed issues identified at the OEWG 35 in April. The outcome was a bracketed text that identified potential terms of reference for a formal contact group at the OEWG 36 on 20 to 24 July.275

29 June 2015, the E.U. and China agreed to “work together with other countries to agree on a multilateral solution to phase down the production and consumption of HFCs,”276 in addition to strengthening collaboration on domestic HFC policies and measures.

30 June 2015, Brazil’s President Dilma Rousseff and U.S. President Barack Obama “agreed to work multilaterally in the Montreal Protocol to consider promptly amendment proposals to phase down HFCs.”277

21 July 2015, the Parties suspended the OEWG 36, rather than adjourning, to allow additional time to complete the terms of reference for a “contact group” that will then negotiate the details of the HFC amendment.278 The suspended OEWG 36 resumed on 29 to 30 October in the United Arab Emirates, which hosted the MOP 27 on 1 to 5 November.

22 October 2015, Pakistan’s Prime Minister Nawaz Sharif and U.S. President Barack Obama “affirmed that their respective countries intend to work together to amend the Montreal
Protocol this year to curb the production and consumption of hydrofluorocarbons.”

29 to 30 October 2015, at the resumed OEWG 36, the Parties to the Montreal Protocol formed a formal contact group to analyze “feasibility and ways of managing HFCs including development of a common understanding on issues related to flexibility of implementation, 2nd and 3rd stage conversions, guidance to the ExCom, enabling activities for capacity building, and the need for an exemption for high ambient temperature countries.”

6 November 2015, at the MOP 27, the Parties to the Montreal Protocol agreed on the Dubai Pathway on Hydrofluorocarbons to “work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings.” The details of the amendment will be negotiated during a series of meetings in 2016, including two extraordinary OEWGs, the first from 4 to 8 April in Geneva, Switzerland and the second from 18 to 21 July in Vienna, Austria, and an extraordinary MOP from 22 to 23 July in Vienna, Austria.

2016

29 February 2016, during the sixth ministerial-level Pakistan-U.S. Strategic Dialogue, Secretary of State John Kerry and Pakistan’s Advisor to the Prime Minister on Foreign Affairs Sartaj Aziz, “reaffirmed their respective countries’ commitments to work together to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons.”

10 March 2016, the U.S. and Canada affirmed their commitments “to reduce use and emissions of hydrofluorocarbons (HFCs) using their respective domestic frameworks” and “to adopt a Montreal Protocol HFC phasedown amendment in 2016, and upon adoption to provide increased financial support to the Protocol’s Multilateral Fund.”

23 March 2016, Argentina’s President Mauricio Macri and U.S. President Barack Obama affirmed “their commitment to adopt an amendment to the Montreal Protocol on hydrofluorocarbons (HFCs) phase down in 2016, building on progress made and within the framework set out in the Dubai Pathway.”

31 March 2016, U.S. President Barack Obama and China’s President Xi Jinping committed to work “bilateral and with other countries to achieve successful outcomes this year in related multilateral fora, including on an HFC amendment under the Montreal Protocol pursuant to the Dubai Pathway.”

4 to 8 April 2016, at the OEWG 37, the Parties to the Montreal Protocol reached a tentative agreement on language for a four-year, potentially renewable exemption in three sectors for 34 countries with high-ambient temperatures. The Parties also reached tentative agreement on text to ensure that the MLF covers incremental costs for converting climate friendly alternatives and supports training of service technicians, based initially on a conference room paper submitted by the Africa Group. The Parties agreed to suspend the meeting and resume on 15 to 16 July in Vienna prior to the OEWG 38. They also agreed that the Secretariat would produce a consolidated text based on the four pending HFC amendments.

19 April 2016, at the conclusion of the 6th Special Session of African Ministerial Conference on the Environment in Cairo, Ministers and delegates from 54 countries of Africa renewed their mandate to continue negotiating an HFC Amendment “with a view of reaching an agreement on such amendment in 2016,” and to support Rwanda in hosting the MOP 28 in October. They also paid tribute to Dr. Mostafa Tolba for his significant role in the negotiation and
adoption of the Vienna Convention and the Montreal Protocol as well as his role in establishing the first ever financial mechanism, the MLF, for the Implementation of the Montreal Protocol.292

21 April 2016, at the conclusion of the United States-Gulf Cooperation Council Second Summit in Riyadh, convened at the invitation of King Salman ibn Abdulaziz of Saudi Arabia, President Obama and the heads of State of the Gulf Cooperation Council (the United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar, and Kuwait) “committed to work toward the adoption of an amendment to the Montreal Protocol in 2016 to phasedown hydrofluorocarbons.”293

24 April 2016, at the conclusion of the 24th Meeting of the Leaders’ Representatives of the Major Economies Forum, representatives from 16 of the member countries expressed “broad support for—and confidence in the prospect of—finalizing an HFC amendment in 2016. Participants [also] acknowledged the important role an HFC phasedown would play in climate action, recognizing that the phasedown amendment would provide for various types of flexibility in implementation.”294

13 May 2016, the leaders of the United States and the Nordic countries announced “additional support through the Protocol’s Multilateral Fund following adoption of an amendment for its implementation” and committed “to adopt a Montreal Protocol HFC phasedown amendment in 2016.”295

16 May 2016, the G7 Environment Ministers welcomed “the Dubai decision to address HFCs under the Montreal Protocol, and support[ed] adoption of a Montreal Protocol HFC phase-down amendment in 2016.”296

27 May 2016, the G7 Leaders welcomed “the decision in Dubai by the Montreal Protocol parties to work to address HFCs under the Montreal Protocol, and [support] adoption of an ambitious Montreal Protocol HFC phase-down amendment in 2016, and intend to provide additional support through the Multilateral Fund following adoption of an amendment for its implementation.” The G7 leaders also recognized “the importance of mitigating emissions of short-lived climate pollutants including black carbon, [HFCs], and methane to help slow the rate of near-term warming.”297

2 June 2016, at the conclusion of the 7th Clean Energy Ministerial, energy ministers from 23 nations and the European Union announced actions to accelerate global development and deployment of “super-efficient, smart, climate friendly and affordable cooling technologies critical for prosperous and healthy societies furthering the goals of the Montreal Protocol.”298

7 June 2016, India’s Prime Minister Narendra Modi and U.S. President Barack Obama “resolved to work to adopt an HFC amendment in 2016 with increased financial support from donor countries to the Multilateral Fund to help developing countries with implementation, and an ambitious phasedown schedule.”299

29 June 2016, at the conclusion of the North American Leaders’ Summit, Canada’s Prime Minister Justin Trudeau, Mexico’s President Enrique Peña Nieto, and U.S. President Barack Obama launched a new North American Climate, Clean Energy, and Environment Partnership and affirmed their commitment to reducing the use of HFCs domestically and “to adopt an ambitious and comprehensive Montreal Protocol hydrofluorocarbons (HFCs) phase-down amendment in 2016.”300

29 June 2016, at the conclusion of the Beijing G20 Energy Ministerial Meeting, the ministers recognized energy efficiency as a long-term priority for the G20 and adopted the new G20 Energy Efficiency Leading Programme (EELP). The Ministers also encouraged interested G20 and non-G20 countries “to participate actively in the additional key areas outlined in the
“EELP” such as the Super-efficient Equipment and Appliances Deployment initiative (SEAD).

15 to 16 July 2016, at the resumed OEWG 37, the Parties to the Montreal Protocol generated solutions for the remaining challenges contained in the Dubai Pathway on HFCs including possible funding solutions, non-party trade provisions, exemption mechanisms, the safety and energy efficiency of alternatives, patents on production and use, and the relationship between an HFC phase-down and HCFC phase-out. At the conclusion of OEWG 37, the Parties agreed to open formal negotiations on an HFC amendment at OEWG 38.

18 to 21 July 2016, at the OEWG 38, the Parties to the Montreal Protocol continued to work in the HFC Management Contact Group and began to consider the four amendment proposals. The Parties suspended the OEWG 38 but allowed the contact group to continue working informally at the margins of the 3rd Extraordinary Meeting of the Parties (ExMOP 3). The OWEG 38 reconvened 8 October 2016, prior to the MOP 28 in Kigali, Rwanda.

21 July 2016, during a specially convened meeting of the CCAC’s High Level Assembly on the margins of the ExMOP 3 in Vienna, Austria, 25 ministers from CCAC Partner countries and other high-level representatives issued a Communiqué “strongly support[ing] the adoption of an ambitious amendment to the Montreal Protocol in 2016 that includes an early freeze and rapid action to phase down HFCs.” The Communiqué also “recognize[d] the value in complementing an HFC phase-down with measures to improve energy efficiency of HFC containing equipment.”

22 July 2016, Mexico’s President Enrique Peña Nieto and U.S. President Barack Obama reaffirmed their “commitment to adopt an ambitious and comprehensive Montreal Protocol hydrofluorocarbons phase-down amendment in 2016.”

22 to 23 July 2016, at the ExMOP 3, which was attended by 35 environment ministers, the Parties to the Montreal Protocol endorsed a range of solutions to the challenges identified under the Dubai Pathway on HFCs and adopted a decision for the TEAP to prepare a report for the MOP 28 assessing the climate benefits and financial implications for the MLF of the schedules for phasing down HFCs in the amendment proposals discussed during the OEWG 38 and the ExMOP 3.

2 August 2016, the Republic of Singapore’s Prime Minister Lee Hsien Loong and U.S. President Barack Obama “affirmed their commitment to work to adopt an ambitious and comprehensive hydrofluorocarbons (HFCs) phase-down amendment in 2016 within the Montreal Protocol pursuant to the Dubai Pathway.”

31 August 2016, at the second India-U.S. Strategic and Commercial Dialogue, India’s External Affairs Minister, India’s Minister of State for Commerce and Industry, U.S. Secretary of State, and U.S. Secretary of Commerce “resolved to continue to work together to adopt a hydrofluorocarbon (HFC) amendment in 2016 with increased financial support from donor countries to the Multilateral Fund..., and an ambitious phasedown schedule, under the Montreal Protocol pursuant to the Dubai Pathway.”

3 September 2016, China’s President Xi Jinping and U.S. President Barack Obama announced that the two countries had deposited their instruments of ratification for the Paris Agreement and further stated their commitment “to work together and with others to reach agreement this year on an ambitious and comprehensive HFC amendment”:

“The United States and China commit to work together and with others to reach agreement this year on an ambitious and comprehensive HFC amendment to the Montreal Protocol, including an early first reduction step and early freeze date for
Article 2 and Article 5 Parties respectively and an ambitious phase-down schedule, with increased and adequate financial support from Article 2 Parties to help Article 5 Parties with their implementation. The United States and China also intend to work together on critical research regarding the safe use of flammable alternatives and commit to collaborate on enhanced domestic action to reduce use of HFCs, improve efficiency standards, support policies to transform the air conditioning market, and remain active participants in the Clean Energy Ministerial’s Advanced Cooling Challenge.

4 to 5 September 2016, the leaders of the G20 met in Hangzhou, China, and announced that in addition to fulfilling their UNFCCC commitments, they “look forward to successful outcomes in related multilateral fora, including the Montreal Protocol and the International Civil Organization.”

8 to 10 September 2016, the Pacific Forum leaders “stressed that the amendment should include an early freeze date for HFC production and consumption followed by a rapid phase down of HFCs. They also emphasized the need to maximize the climate benefits of an HFC phase down by providing incentives to secure the major energy efficiency gains in appliances that can be achieved concomitant with the global phase down of HFCs.”

22 September 2016, a group of 105 countries endorsed the New York Declaration of the Coalition to Secure an Ambitious HFC Amendment, strongly supporting “the adoption of an ambitious hydrofluorocarbon (HFC) phasedown amendment at the upcoming October 2016 Meeting of the Parties to the Montreal Protocol in Rwanda that includes an early first reduction step for non-Article 5 parties, an early freeze date for Article 5 parties, and an ambitious phasedown schedule for all parties.”

22 September 2016, a group of 16 donor countries announced they would “provide an additional $27 million USD in 2017 to the Multilateral Fund if an ambitious HFC amendment is adopted at the October 2016 Meeting of the Parties with a sufficiently early freeze date for Article 5 parties to warrant fast-start support for implementation.” On the same day, a group of 19 philanthropic donors announced they would provide $53 million USD to support the Article 5 countries in improving energy efficiency in parallel with an HFC phasedown.

8 October 2016, the OEWG 38 resumed in Kigali, Rwanda, and the Parties continued and concluded work assigned to the contact group under the Dubai Pathway, which involved resumed discussions relating to proposed amendments, including calculation of baselines and years for freezes and reduction steps. The parties also decided to create a legal drafting group to ensure amendment text would be ready by the close of the MOP 28.

10–15 October 2016, at the MOP 28, the Parties to the Montreal Protocol adopted the Kigali Amendment to amend the Protocol to include HFCs while also adopting other substantive and procedural decisions related to essential-use exemptions, critical-use exemptions, and the replenishment of the MLF.

2017

14 November 2017, at the 9th High Level Assembly of the CCAC during the COP 23 in Bonn, Germany, ministers from CCAC Partner countries and other high-level representatives adopted a Comminiqué “commend[ing] the countries that included short-lived climate pollutants in their national climate action plans, and the twelve countries that have ratified the Kigali Amendment to phase-down HFCs.”

17 November 2017, ahead of the MOP 29, Sweden became the 20th Party to ratify the Kigali Amendment, ensuring that the Amendment will enter into force 1 January 2019. Of the first 20 Parties to ratify the Amendment, 13 were members of the CCAC.
20—24 November 2017, at the 30th Anniversary MOP 29, the Parties agreed to an MLF replenishment of US$540 for the triennium 2018—2020. The Parties also agreed to hold a workshop on energy efficiency during the OEWG 40 and requested the TEAP to study how to integrate energy efficiency with the HFC phasedown under the Kigali Amendment. Overall, the Parties adopted a total of 10 substantive and 16 procedural decisions.332

13. Kigali Amendment phasedown schedule and avoided warming
During the MOP 28 in October 2016, the Parties to the Montreal Protocol adopted the Kigali Amendment whereby the Parties agreed to phasedown HFCs under the Montreal Protocol.333 The phasedown schedules for HFCs under the Kigali Amendment are shown in Table 6 below. Most developed countries will begin phasedown in 2019 while a selection of developed countries will begin one year later.334 A majority of developing countries will freeze consumption and production of HFCs in 2024 and begin phasedown five years later.335 Developing countries that are susceptible to high ambient temperatures have been granted an extension, and these countries will freeze at 2028 and begin phasedown in 2032.336

Table 6: Phasedown schedules for HFCs under the Kigali Amendment337

<table>
<thead>
<tr>
<th>A5 Parties Group 1</th>
<th>A5 Parties Group 2*</th>
<th>Non-A5 Parties Group 1</th>
<th>Non-A5 Parties Group 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze</td>
<td>2024</td>
<td>2028</td>
<td></td>
</tr>
<tr>
<td>1st Step</td>
<td>2029 – 90%</td>
<td>2032 – 90%</td>
<td>2019 – 90%</td>
</tr>
<tr>
<td>2nd Step</td>
<td>2035 – 70%</td>
<td>2037 – 80%</td>
<td>2024 – 60%</td>
</tr>
<tr>
<td>3rd Step</td>
<td>2040 – 50%</td>
<td>2042 – 70%</td>
<td>2029 – 30%</td>
</tr>
<tr>
<td>4th Step</td>
<td>2034 – 20%</td>
<td>2034 – 20%</td>
<td></td>
</tr>
<tr>
<td>Final Step</td>
<td>2045 – 20%</td>
<td>2047 – 15%</td>
<td>2036 – 15%</td>
</tr>
</tbody>
</table>

* Bahrain, India, Iran, Iraq, Kuwait, Oman, Pakistan, Qatar, Saudi Arabia, and United Arab Emirates
** Belarus, Kazakhstan, Russian Federation, Tajikistan, and Uzbekistan

High-ambient temperature countries, which are those with an average of at least two months with peak average temperatures over 35°C per year, are subject to an exemption for the consumption and production phasedown freeze dates and schedules for the following subsectors: “(a) Multi-split air conditioners (commercial and residential) (b) Split ducted air conditioners (commercial and residential) (c) Ducted commercial packaged (self-contained) air-conditioners.”339 High-ambient temperature countries include Algeria, Bahrain, Benin, Burkina Faso, Central African Republic, Chad, Côte d’Ivoire, Djibouti, Egypt, Eritrea, Gambia, Ghana, Guinea, Guinea-Bissau, Iran (Islamic Republic of), Iraq, Jordan, Kuwait, Libya, Mali, Mauritania, Niger, Nigeria, Oman, Pakistan, Qatar, Saudi Arabia, Senegal, Sudan, Syrian Arab Republic, Togo, Tunisia, Turkmenistan, and United Arab Emirates.340

In addition to requiring the phasedown of the direct production of HCFCs and certain HFCs, the Amendment mandates the destruction of HFC-23 that produced as a byproduct of HCFC-22.341

The Kigali Amendment will limit warming from HFCs to 0.06°C (see Figure 9), avoiding nearly 0.5°C of warming by 2100342 and 80 Gt CO₂e by 2050.343
In addition to the specific commitments to freeze and phase down the production and consumption of HFCs under the Amendment, the Parties at the MOP 28 also agreed on a decision to investigate opportunities to enhance the energy efficiency of appliances and equipment that use such refrigerants. The Kigali Decision on Energy Efficiency submitted by Rwanda and Morocco requests the Technical and Economic Assessment Panel to review energy efficiency opportunities in the room AC and heat pump sectors, invites parties to submit, on a voluntary basis, relevant information on energy efficiency innovations in these sectors to the Ozone Secretariat by May 2017, and requests TEAP to assess the information submitted by parties on energy efficiency opportunities in the refrigeration and air conditioning sectors during the transition to low- and zero-GWP alternatives and to report to the MOP 29. Such a decision is especially important given that recent climate science indicates that the climate mitigation benefits of an HFC phasedown could be doubled if matched up with complementary measures to improve energy efficiency of appliances and equipment.

14. Conclusion

The adoption of the Kigali Amendment captures the international will to remove HFCs from global production and consumption, a process that was started nearly a decade ago with scientific studies that described the detrimental harm the continued growth of HFCs would inflict on the climate. The national bans, boycotts, and voluntary phaseout of CFCs in the late 1970s and early 1980s paved the way for controls under the Montreal Protocol, and similar actions occurred today to pave the way for the Kigali Amendment and created the conditions for fast implementation. In response to the warnings about HFCs from scientists and the concerns of consumers and the policy community, markets reacted by avoiding high-GWP HFCs. Leading up to the Kigali Amendment, companies were already producing climate-safe alternatives to HFCs and were increasing their investment in alternatives and speeding up commercialization. Simultaneously, a growing list of laws and regulations at the national and regional levels signaled transition away from high-GWP HFCs. HFCs will be phased down and replaced with climate-friendly alternatives, many of which already exist and are being mass-produced, and will provide fast mitigation and avoid additional warming. Without the Kigali Amendment, HFC emissions could have added up to 0.5°C of additional warming by the end of the century.
Appendix I: List of acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5 Parties</td>
<td>developing countries qualified for grace periods and MLF financing under the Montreal Protocol</td>
</tr>
<tr>
<td>AR5</td>
<td>Fifth Assessment Report of the IPCC</td>
</tr>
<tr>
<td>BASIC</td>
<td>Brazil, South Africa, India, and China</td>
</tr>
<tr>
<td>BAU</td>
<td>business-as-usual</td>
</tr>
<tr>
<td>BC</td>
<td>black carbon</td>
</tr>
<tr>
<td>CAFE</td>
<td>corporate average fuel economy</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CCAC</td>
<td>Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CGF</td>
<td>Consumer Goods Forum</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂-eq</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>E.U.</td>
<td>European Union</td>
</tr>
<tr>
<td>G7</td>
<td>Canada, France, Germany, Italy, Japan, United Kingdom, and United States</td>
</tr>
<tr>
<td>G8</td>
<td>Canada, France, Germany, Italy, Japan, Russia, United Kingdom, and United States</td>
</tr>
<tr>
<td>G20</td>
<td>An international forum for the governments and central bank governors from 20 major economies</td>
</tr>
<tr>
<td>Gt</td>
<td>gigatonne (billion tonnes)</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HCFC</td>
<td>hydrochlorofluorocarbon</td>
</tr>
<tr>
<td>HFC</td>
<td>hydrofluorocarbon</td>
</tr>
<tr>
<td>HFO</td>
<td>hydrofluoroolefin</td>
</tr>
<tr>
<td>ISEER</td>
<td>Indian Seasonal Energy Efficiency Ratio</td>
</tr>
<tr>
<td>IGSD</td>
<td>Institute for Governance & Sustainable Development</td>
</tr>
<tr>
<td>IISD</td>
<td>International Institute for Sustainable Development</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LCCP</td>
<td>life-cycle climate performance</td>
</tr>
<tr>
<td>MEA</td>
<td>Multilateral Environment Agreement</td>
</tr>
<tr>
<td>MLF</td>
<td>Multilateral Fund</td>
</tr>
<tr>
<td>MOP</td>
<td>Meeting of the Parties of the Montreal Protocol</td>
</tr>
<tr>
<td>NGO</td>
<td>nongovernmental organization</td>
</tr>
<tr>
<td>Non-A5 Parties</td>
<td>developed country Parties to the Montreal Protocol</td>
</tr>
<tr>
<td>ODP</td>
<td>ozone-depleting potential</td>
</tr>
<tr>
<td>OEWG</td>
<td>Open-ended Working Group of the Parties of the Montreal Protocol</td>
</tr>
<tr>
<td>ODS</td>
<td>ozone-depleting substance</td>
</tr>
<tr>
<td>PFC</td>
<td>perfluorocarbon</td>
</tr>
<tr>
<td>SF₆</td>
<td>sulfur hexafluoride</td>
</tr>
<tr>
<td>SEAD</td>
<td>Super-efficient Equipment and Appliance Deployment Initiative</td>
</tr>
<tr>
<td>SIDS</td>
<td>small island developing states</td>
</tr>
<tr>
<td>SLCPs</td>
<td>short-lived climate pollutants (black carbon, HFCs, methane, and tropospheric ozone)</td>
</tr>
<tr>
<td>SNAP</td>
<td>Significant New Alternatives Policy Program at U.S. EPA</td>
</tr>
<tr>
<td>TEAP</td>
<td>Technology and Economic Assessment Panel (of the UNEP Montreal Protocol)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>U.S. DOE</td>
<td>United States Department of Energy</td>
</tr>
</tbody>
</table>
Appendix II: Background on IGSD’s fast-action campaign to reduce HFCs and other short-lived climate pollutants

Phasing down HFCs under the Montreal Protocol is the central focus of IGSD’s fast-action climate mitigation campaign, which promotes using existing laws and institutions to achieve immediate climate mitigation and complement efforts under the UNFCCC. IGSD’s strategy was presented in a 2009 article written by Nobel Laureate Mario Molina, Durwood Zaelke, K. Madhava Sarma, Stephen O. Andersen, Veerabhadran Ramanathan, & Donald Kaniaru, *Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO₂ emissions*. The paper was written for the *Proceedings of the National Academy of Sciences* of the U.S. as the policy piece in a *PNAS Special Feature* on climate tipping points edited by John Schellnhuber.

The article defines fast-action strategies as those that can be started in two to three years, substantially implemented in five years in developed countries and ten years in developing countries, and can produce a response in the climate system on a timescale of decades, to complement cuts in CO₂, which operate on a longer timescale. Broad implementation of these strategies can cut the rate of global warming in half and the rate of Arctic warming by two-thirds over the next several decades.

The HFC component of this approach was updated in a November 2012 policy paper, *Strengthening Ambition for Climate Mitigation: The Role of the Montreal Protocol in Reducing Short-lived Climate Pollutants*, by Durwood Zaelke, Stephen O. Andersen, & Nathan Borgford-Parnell in RECIET, and the science component presented in a June 2013 paper, *The role of HFCs in mitigating 21st century climate change*, by Yangyang Xu, Durwood Zaelke, Guus J. M. Velders, and Veerabhadran Ramanathan (26 June 2013). The paper calculates that mitigating SLCPs can avoid 1.5°C of warming by end-of-century, comparable to the 1.1°C of warming that can be avoided by aggressive CO₂ mitigation by end-of-century. The paper calculates that by 2050 SLCP mitigation can avoid six times more warming than aggressive CO₂ mitigation (0.6°C from SLCP mitigation, compared to 0.1°C from CO₂ mitigation). Up to one-third of the total of 1.5°C in avoided warming from SLCP mitigation, or 0.5°C, will come from cutting HFCs.

Related research led by Ramanathan published April 2013 in *Nature Climate Change* calculates that cutting SLCPs can reduce the rate of sea-level rise quickly by about 25%, and when coupled with aggressive CO₂ mitigation, can double this. Individual contributions to avoided sea-level rise by 2100 from different mitigation actions are: 29% from CO₂ measures and 71% from SLCP measures (13% from HFC measures, 17% from black carbon measures, and 41% from methane measures). Aixue Hu, Yangyang Xu, Claudia Tebaldi, Warren M. Washington, & Veerabhadran Ramanathan (2013) *Mitigation of short-lived climate pollutants slows sea-level rise*, *Nature Climate Change* 3:730–734.

IGSD promotes the importance of reducing HFCs and other SLCP through scientific and policy publications, several of which are listed below. IGSD also promotes the importance of SLCP mitigation in various policy venues, as well as through the media. Op-Eds by IGSD, and others, are listed below, along with a list of Editorials in *Nature, The Economist, The New York Times, The Washington Post*, and *Bloomberg*.

IGSD Publications on HFCs and the Montreal Protocol

1. Durwood Zaelke (2017) *Historic Kigali Amendment eliminates warming from one of six main greenhouse gases*, ABA TRENDS.
2. David G. Victor, Durwood Zaelke, & V. Ramanathan (2015) *Soot and short-lived pollutants provide political opportunity*, NATURE CLIMATE CHANGE.
4. Nathan Borgford-Parnell, Maxime Beaugrand, Durwood Zaelke, & Stephen O. Andersen (October 2015) *Phasing down the use of hydrofluorocarbons (HFCs)*, in *SEIZING THE GLOBAL OPPORTUNITY*, a report from the New Climate Economy.

23. Romina Picolotti (December 2011) *An equitable arrangement*, UNEP Our Planet: *Powering Climate Solutions*.

Select Editorials and Op-Eds on HFCs and the Montreal Protocol

Editorials:

2. *Chicago Sun Times*, Editorial, “*Don’t let Congress block historic climate change deal*” (21 Oct 2016)

5. *The Financial Times*, “*We have saved the planet once, now let’s do it again*” (3 July 2016)

Op-Eds:

8. *Climate Home*, Op-Ed, Mohamed Adow, “Poor countries have nothing to fear from scrapping HFCs” (28 Sept 2016)
9. *Financial Express*, Op-Ed, Ajay Mathur, “Here’s why India needs to be at the forefront of effort to phase out HFCs” (21 Sept 2016)
15. *The Huffington Post*, Op-Ed, Durwood Zaelke, “G7 Leaders Commit to Cut Near-Term Warming by Reducing HFCs, Other Super Pollutants” (1 June 2016)
17. *USA Today*, Op-Ed, Mario Molina, V. Ramanathan, & Durwood Zaelke, “Paris deal's carbon cuts miss critical warming target” (22 April 2016)
27. The Huffington Post, Op-Ed, Durwood Zaelke, “Celebrating the Best Climate Treaty of All Time” (15 Sept 2015)
35. The Huffington Post, Op-Ed, Durwood Zaelke & V. Ramanathan, “The Path to a Safe Climate Goes Through India” (21 Jan 2015)
37. Reporterre, Op-Ed, Maxime Beaugrand & Durwood Zaelke, “Cette semaine, les Etats peuvent faire un grand pas dans la lutte contre le changement climatique” (17 Nov 2014)
40. The Huffington Post, Op-Ed, Mario Molina, V. Ramanathan, & Durwood Zaelke, “As Climate Impacts Accelerate, Speed of Mitigation Becomes Key” (15 July 2014)
41. The Huffington Post, Op-Ed, Nithya Ramanathan, Durwood Zaelke & V. Ramanathan, “Bringing Climate Solutions Down to Earth” (7 June 2014)
42. The Hill, Op-Ed, Durwood Zaelke & Paul Bledsoe, “Effective climate agreements: past, present and future” (15 April 2014)
44. Las Vegas Sun, Op-Ed, Lee Thomas, “Follow Reagan’s lead and take action on climate change” (11 Dec 2013)
48. Washington Post, Op-Ed, Jim Yong Kim, “U.S. takes key climate change steps, but the world must do more” (27 June 2013)

53. *The Hill*, Op-Ed, Durwood Zaelke & Andrew Light, “Rio meeting can still produce a key climate outcome” (20 June 2012)

55. *The Hill*, Op-Ed, Mario Molina & Durwood Zaelke, “How to cut climate change in half” (14 Feb 2012)

57. *The Guardian*, Op-Ed, Achim Steiner, “CO₂ is not the only cause of climate change” (11 Sept 2009)
Mechanical efficiency of the room air conditioning equipment and from the improved efficiency of the new low-GWP refrigerants. Shah N., et al. (2015) Benefits of leapfrogging to superefficiency and low global warming potential refrigerants in air conditioning, Ernest Orlando Lawrence Berkeley National Laboratory, ES-10 (“[R]esults for the policies required to achieve the goals of the Montreal Protocol have been met, and the Montreal Protocol is now the most successful international environmental treaty in the world. Additionally, the Montreal Protocol has been praised for its effectiveness in protecting the ozone layer.”).
enacted in parallel are lower than simple addition of the results for the policies in isolation simply because the results are multiplicative and not additive. i.e. the results from efficiency improvement are multiplied to the results from refrigerant transition. For example an efficiency improvement of 30% along with a 5% improvement in efficiency from refrigerant transition will result in a 33.5% reduction in energy consumption...”

12 Note that there is some limited overlap between the direct avoided emissions from the combined transition in the room air conditioning sector and the avoided emissions from a full phasedown of HFCs. Shah N., et al. (2015) Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Air Conditioning, Ernest Orlando Lawrence Berkeley National Laboratory, ES-9 (“While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO\textsubscript{2} in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO\textsubscript{2} by 2050.”)

13 Shah N., et al. (2016) Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India, Ernest Orlando Lawrence Berkeley National Laboratory, 16–17 (see Table 3, Figure 3; “If one considers a three year payback as a criterion for consumer cost effectiveness, efficiency improvement of ISEE from 2.8 to over 5.2 ISEE is cost effective depending on the assumptions about costs.”)

14 The New York Donor Declaration on an HFC Amendment to the Montreal Protocol (22 Sept 2016) (“[W]e announce today our intent to provide an additional $27 million USD in 2017 to the Multilateral Fund if an ambitious HFC amendment is adopted at the October 2016 Meeting of the Parties with a sufficiently early freeze date for Article 5 parties to warrant fast-start support for implementation.”; see also Press Release, The White House Office of the Press Secretary, Leaders from 100+ Countries Call for Ambitious Amendment to the Montreal Protocol to Phase Down HFCs and Donors Announce Intent to Provide $80 Million of Support (22 Sept 2016) (“Complementing the funding announced by donor countries today, the following group of 19 philanthropists announced their intent to provide $53 million to Article 5 countries to support improvements in energy efficiency: Barr Foundation; Bill Gates; Children’s Investment Fund Foundation; ClimateWorks Foundation; David and Lucile Packard Foundation; Heising-Simons Foundation; Hewlett Foundation; John D. and Catherine T. MacArthur Foundation; Josh and Anita Bekenstein; John and Ann Doerr; Laura and John Arnold; Oak Foundation; Open Philanthropy Project; Pirojsha Godrej Foundation; Pisces Foundation; Sandler Foundation; Sea Change Foundation; Tom Steyer; and Wyss Foundation. This support reflects a strong recognition from private philanthropists of the dual benefits associated with taking advantage of the transition to HFC alternatives to also improve energy efficiency.”).

15 Solomon S., et al. (2016) Emergence of healing in the Antarctic ozone layer, SCIENCE 353(6296):269–274, 273 (“The ozone hole typically begins to open in August of each year and reaches its maximum areal extent in October. Decreases in the areal extent of the October hole are expected to occur in the 21st century as chemical destruction slows, but they cannot yet be observed against the backdrop of interannual variability, in part because of the extremely large hole in 2015. However, monthly averaged observations for September show a shrinkage of 4.5 ± 4.1 million km2 between 2000 and 2015. The model underestimates the observed September hole size by about 15% on average, but it yields variability and trends (4.9 ± 4.7 million km2) that are similar to the observations. ...The observed and modeled day of the year when the ozone hole exceeds a threshold value of 12 million km2 has been occurring later in recent years, indicating that early September holes are becoming smaller. This result is robust to the specific choice of threshold value and implies that the hole is opening more slowly as the ozone layer heals.”).

16 The Montreal Protocol’s Technology and Economic Assessment Panel (TEAP) uses the term “low-GWP” to refer to refrigerants with GWPs of 300 or lower while “moderate-GWP” refers to refrigerants with GWPs of 1,000 or lower. Refrigerants with a GWP of over 1000 are considered “high-GWP”. UNEP (2011) 2010 ASSESSMENT REPORT OF THE TECHNOLOGY AND ECONOMIC ASSESSMENT PANEL (TEAP), 14 (“The terms ‘high-GWP’ or ‘low-GWP’ are comparative in nature. The most commonly used ODS, representing more than 95 per cent of the global use of these substances have GWPs (100 year time horizon) between 700 and 4000, with a median value of slightly more than 2000. The TEAP proposal is to classify the 100-yr GWPs of greenhouse gases as ‘low’ if less than 300, ‘moderate’ if greater than 300 but less than 1000, and ‘high’ if greater than 1000.”)

18 Fortems-Cheiney A., et al. (2015) Increase in HFC-134a emissions in response to the success of the Montreal Protocol, J. GEOPHYSICAL RESEARCH: ATMOSPHERES 120:11,728–11,742, 11,734 (“Posterior emissions range from 18 ± 2 Gg/yr in 1995 to 167 ± 5 Gg/yr in 2010... These estimates are in excellent agreement with the posterior emissions of Xiang et al. [2014], ranging from 20 Gg in 1995 to 153 Gg in 2010 who used the same NOAA and AGAGE networks and additional observational data (i.e., the aircraft campaigns Hiaper-Pole-to-Pole of Carbon Cycle and Greenhouse Gases Study HIPPO over the Pacific Ocean) to derive global emissions for these years...[T]his is also consistent with the posterior emissions of Montzka et al. [2014] and Rigby et al. [2014], ranging, respectively, from 22 Gg in 1995 to 168 and 167 Gg in 2010.”).

19 NASA (2015) FACTSHEET: OZONE DEPLETION BY HYDROFLUOROCARBONS, 1 (“Ozone depletion potentials (ODPs) for HFCs range from 0.39x10-3 to 30.0x10-3, approximately, 100 times larger than previous ODP estimates that were based solely on chemical effects. Per unit mass, CFC-11 causes about 400 times more ozone depletion than the HFCs, while HCFC-22 causes 8 times more ozone depletion... Reducing HFC emissions, and thus their radiative forcing, would reduce the HFC impacts on the
stratosphere, lessening the temperature and circulation responses and the resulting ozone depletion. Hence, emerging HFC species that have low atmospheric concentrations, short lifetimes, and are weak radiative forcing agents would have proportionately smaller impacts on stratospheric climate and ozone.

20 Hurwitz M. M., et al. (2015) Ozone depletion by hydrofluorocarbons, Geophysical Research Letters 42(20):8686–8692 (“In the past three decades, CFCs, HCFCs, halons and other ozone-depleting substances (ODSs) caused large stratospheric ozone losses, most prominently in the Antarctic (i.e., the so-called "ozone hole"). These compounds contain chlorine (Cl) and/or bromine (Br), and when broken down in the stratosphere, the Cl and Br atoms deplete ozone via catalytic loss cycles… Note that, because of differences in their IR absorption spectra, the structure of the heating response to HFCs closely resembles that of the CFCs (i.e., with maximum heating ~18 km altitude) but is different than that of CO2 (with tropospheric warming and stratospheric cooling)… HFC emissions lead to a net stratospheric ozone loss. Figure 1 (thick black line, lower panel) shows that the total column ozone response to HFCs is approximately -0.035% (–0.10 DU) in 2050. The ozone response to HFCs results from temperature and circulation changes; sensitivity simulations show that 35% of the global mean total ozone change is driven by temperature changes (i.e., temperature impacts on gas-phase and heterogeneous reactions) while the remainder is driven by circulation changes.”).

21 For example, HFC-143a has a maximum ODP of 0.0056, compared to HCFC-151, which has a maximum ODP of 0.005. See Hurwitz M. M., et al. (2015) Ozone depletion by hydrofluorocarbons, Geophysical Research Letters 42(20):8686–8692, Table 1; and UNEP OzoneAction (2016) HFC Controlled Under the Montreal Protocol.

23 U.S. EPA (2014) INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS: 1990 – 2012, Table ES-2 (between 2005 and 2012, U.S. HFC emissions in China increased by 111% between 2000 and 2005 (and 2,775% between 1990 and 2010), compared to a 68% increase in CO2, 8% increase in methane, and 6% increase in N2O. HCFC and HFC emissions increased by 78% in India over the same period, compared to 19% for CO2, 10% for methane, and 6% for N2O. HCFC and HFC emissions in the U.S. increased by 30% between 2000 and 2005 compared to 1.5% for CO2, and a 5% decrease in methane and N2O. According to the U.S. EPA (2014) , Table ES-2, U.S. HFC emissions from the substitution of ozone depleting substances grew by nearly 41% between 2005 and 2012, and HFCs are the only greenhouse gases that saw total emissions increase between 2011 and 2012. E.U. CO2-eq emissions of HFCs increased by 298% between 1990 and 2012, and are the only greenhouse gases, measured by CO2-eq emissions, that have increased every year over that period. According to the Australian Government’s 2011 submission to the UNFCCC, HFC emissions in Australia increased by 578.5% between 1990 and 2011; the only other two greenhouse gas emissions to increase over that period were CO2 and N2O, which increased 46.3% and 36.1% respectively. Australian Government (2013) AUSTRALIA’S SIXTH NATIONAL COMMUNICATION ON CLIMATE CHANGE: A REPORT UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE; see also European Environment Agency (2014) ANNUAL EUROPEAN UNION GREENHOUSE GAS INVENTORY 1990 – 2012 AND INVENTORY REPORT 2014, No 9/2014; and Fang X., et al. (2016) Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050, ENVIRON. SCI. TECHNOL. 50(4):2027–2034.

24 According to the World Resources Institute Climate Analysis Indicators Tool (CAIT), CO2-eq emissions of fluorinated gases (F-gases), which include HCFCs, HFCs, SF6 and PFCs, in China increased by 111% between 2000 and 2005 (and 2,775% between 1990 and 2010), compared to a 68% increase in CO2, 8% increase in methane, and 6% increase in N2O. HCFC and HFC emissions increased by 78% in India over the same period, compared to 19% for CO2, 10% for methane, and 6% for N2O. HCFC and HFC emissions in the U.S. increased by 30% between 2000 and 2005 compared to 1.5% for CO2, and a 5% decrease in methane and N2O. According to the U.S. EPA (2014) , Table ES-2, U.S. HFC emissions from the substitution of ozone depleting substances grew by nearly 41% between 2005 and 2012, and HFCs are the only greenhouse gases that saw total emissions increase between 2011 and 2012. E.U. CO2-eq emissions of HFCs increased by 298% between 1990 and 2012, and are the only greenhouse gases, measured by CO2-eq emissions, that have increased every year over that period. According to the Australian Government’s 2011 submission to the UNFCCC, HFC emissions in Australia increased by 578.5% between 1990 and 2011; the only other two greenhouse gas emissions to increase over that period were CO2 and N2O, which increased 46.3% and 36.1% respectively. Australian Government (2013) AUSTRALIA’S SIXTH NATIONAL COMMUNICATION ON CLIMATE CHANGE: A REPORT UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE; see also European Environment Agency (2014) ANNUAL EUROPEAN UNION GREENHOUSE GAS INVENTORY 1990 – 2012 AND INVENTORY REPORT 2014, No 9/2014; and Fang X., et al. (2016) Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050, ENVIRON. SCI. TECHNOL. 50(4):2027–2034.

Montzka S. A., et al. (2014) Recent Trends in Global Emissions of Hydrochlorofluorocarbons and Hydrofluorocarbons—Reflecting on the 2007 Adjustment to the Montreal Protocol. J. Phys. Chem. A. 119(19):4439–4449, 4439 ("HFC global emission magnitudes related to this substitution totaled 0.51 (0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications."); and Fang X., et al. (2016) Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050. Environ. Sci. Technol. 50(4):2027–2034, 2032 ("A comparison between the HFC emissions for non-Annex I countries (mainly developing countries) for 2010–2012 with those from China estimated in this study shows that China’s HFC CO2-eq emissions account for ~35% of total emissions in non-Annex I countries in 2010–2012. In other words, significant HFC emissions are indeed coming from developing countries other than China. By comparing estimates for the two countries 2007–2009 and 2010–2012, we find that HFC CO2-eq emissions from other developing countries have increased by ~30%. The uncertainty in our estimated emissions from China could indeed be equivalent to those from other nations with smaller emissions.").

Fortems-Cheiney A., et al. (2015) Increase in HFC-134a emissions in response to the success of the Montreal Protocol. J. Geophysical Research: Atmospheres 120:11,728–11,742, 11,735 ("The posterior inventory highlights the U.S. as the main HFC-134a source, contributing at least 45% of the global emissions since 1995. Our posterior U.S. emissions are higher than most of the studies for the years 2005–2007. In 2005, we infer emissions 62% higher (57 ± 9 Gg/yr, starting from a prior of 68 ± 24 Gg/yr) than the 35 Gg/yr of Stohl et al. [2009] (starting from a prior of 57 Gg/yr). Our posterior U.S. estimates are also more than 2 times larger than the HFC-134a emissions estimated from aircraft measurement campaigns in 2004 and 2006 by Millet et al. [2009] and higher than the estimates of 43 Gg/yr (22–60) of Manning and Weiss [2007] for year 2006 and of 43 ± 6 Gg/yr of Barletta et al. [2011] for 2008. The more comprehensive suite of data used here compared to these studies (e.g., measurements only from the THD stations for Manning and Weiss [2007]) may explain such differences.").

Velders G. J. M, et al. (2012) Preserving Montreal Protocol Climate Benefits by Limiting HFCs. Sci. 335(6071):922–923, 922 ("The current contribution to climate forcing of HFCs used as ODS substitutes is about 0.012 W/m2. In an upper-range scenario, global radiative forcing from HFCs increases from about 0.012 W/m2 in 2010 to 0.25 to 0.40 W/m2 in 2050."). See also Fortems-Cheiney A., et al. (2015) Increase in HFC-134a emissions in response to the success of the Montreal Protocol. J. Geophysical Research: Atmospheres 120:11,728–11,742, 11,728 ("While posing no threat to stratospheric ozone, HFC-134a is nevertheless of concern because of its long life- time, combined with a relatively high global warming potential (GWP) of 1500 over the 100 year horizon [Forster et al., 2007; Harris et al., 2014]. Indeed, the HFC-134a contribution to atmospheric radiative forcing has grown from negligible in 1995 to 12 ± 0.2 mW/m2 in recent years [Rigby et al., 2014] following the sharp emission rise over this period. Within current scenarios of continued HFC emission growth, its contribution to the radiative forcing of the climate system could be equivalent to 9–19% of carbon dioxide emissions by the year 2050 [Velders et al., 2009; Daniel et al., 2011].

Rogelj J., et al. (2015) Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. EnvtL.. Research Letters 10(075001):1–10, 7 ("Finally, the high end of recent projections of HFCs are significantly higher than earlier estimates. Not tackling this projected increase strongly reduces the CO2 budgets consistent with 50% probability of keeping warming to below 2, 3, and 4°C, by 20–45%, 10–15%, and 5–10%, respectively (table 2, figure 3(B). In some cases, the highest updated HFC projections would push the achievability of staying below low temperature levels with high probability (66 or 75%) beyond the here assessed scenario literature. Given that our HFC assumptions are based on the highest available literature estimates and also lower—equally plausible—estimates are available, our results should also be read as upper-limit estimates.").
33 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563–4572, 4568 (“The annual HFC emissions in our scenarios reach up to 12% of the upper-range annual CO2 emissions (RCP8.5) in 2050 and 75% for the CO2 scenario with strong mitigation (RCP3PD)”; see also UNEP (2011) HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT; and Montzka S. A. (2012) HFCs in the Atmosphere: Contributions, Emissions, Impacts, ASHRAE. Some countries will likely see larger growth in annual emissions. For example, China’s HFC emissions are projected to be equivalent to more than 15% of annual CO2 emissions under a BAU scenario in 2050. Fang X., et al. (2016) Hydrofluorocarbons (HFCs) emissions in China: an inventory for 2005–2013 and projections to 2050, Environ. Sci. Technol. 50(4):2027–2034, 2032 (“Under the HFC BAU Scenario, the proportions of China’s HFC CO2-eq emissions to China’s CO2 emissions (Figure S3a) were estimated to increase from less than 1% in 2010 to more than 15% in 2050, revealing the possible significance of future China’s HFC emissions to China’s total GHG emissions.”).

34 Velders G. J. M., et al. (2009) The large contribution of projected HFC emissions to future climate forcing, Proc. Nat’l Acad. Sci. U.S.A. 106(27):10949–10954, 10953 (“In 2050, the RF of global HFCs is in the range of 0.25–0.40 Wm−2, which is more than a factor of 3 larger than SRES HFC values. In a comparison with the SRES CO2 scenarios in 2050, the HFC RF fraction is 7–12% of the CO2 values. The HFC RF in 2050 is equal to 6–13 years of RF growth from CO2 in the 2050 time frame. In the comparison with the 450- and 550-ppm CO2 stabilization scenarios the HFC fraction increases to 10–16% and 9–14%, respectively.”).

35 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563–4572, 4568 (“In these scenarios, the HFC bank grows to 39–64 GtCO2-eq compared with an annual CO2 emission of 12–74 GtCO2-eq yr−1 in 2050 (Table 2). So, the estimated HFC bank sizes range from a factor of less than 1 to more than 5 year’s worth of CO2-eq emissions in 2050 for the scenarios compared here.”).

36 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563–4572, 4568 (“In these scenarios, the HFC bank grows to 39–64 GtCO2-eq compared with an annual CO2 emission of 12–74 GtCO2-eq yr−1 in 2050 (Table 2). So, the estimated HFC bank sizes range from a factor of less than 1 to more than 5 year’s worth of CO2-eq emissions in 2050 for the scenarios compared here.”).

37 Velders G. J. M., et al. (2009) The large contribution of projected HFC emissions to future climate forcing, Proc. Nat’l Acad. Sci. U.S.A. 106(27):10949–10954, 10951–10952 (“Total HFC GWP-weighted consumption grows strongly from 2012, primarily in developing countries, reaching 6.4–9.9 GtCO2-eq per year in 2050. The consumption in developing countries becomes larger than that in the developed countries before 2020 and exceeds that in developed countries by up to 800% by 2050, a reflection of larger populations and higher GWP growth in these countries. With emissions closely following consumption, but lagging by a few years, total GWP-weighted HFC emissions are 5.5–8.8 GtCO2-eq per year by 2050...”). A 2015 paper by Velders, et al., presents estimates of regional emissions using new sources of data for regions and sectors and new assumptions about market saturation in terms of climate rather than the hotter and more humid climates typical of many developing countries where refrigeration and air conditioning growth will be highest; both HFC business-as-usual scenarios (Velders et al., 2009 & 2015) should be considered as lower limits of future HFC emissions. The avoided warming from an HFC phase down calculated in Xu, et al. (2013) would be even larger without the assumption about market saturation, and might be slightly smaller with earlier market saturation. See Velders G. J. M., et al. (2015) Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions, Atmosphere: Eng/T. 123:200–209.

39 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563–4572, 4563 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050.”).

40 Davis S. J. & Socowor R. H. (2014) Commitment Accounting of CO2 Emissions, Envtl. Reseurch Letters 9, 1–9, 4 (“The point of view is from 2012, a 40-year lifetime is assumed for all generators, and all fossil fuel-fired electricity-generating units (‘generators’) that were built globally between 1950 and 2012 are included. Global committed emissions from these generators total 629 (508–761) Gt CO2 (light green area; only the central estimate reflecting a 40-year lifetime is shown), of which 322 Gt CO2 were realized emissions by 2012 (black area), and 307 (192–439) Gt CO2 were remaining commitments as of 2012 (dark green area). The error estimates in parentheses here are for assumed lifetimes of 30 and 50 years, presented in table 1 (along with the results of assuming lifetimes of 20 and 60 years). Thus, the range of estimated remaining commitments in 2012 (192–439Gt CO2) assigns an uncertainty of 40% to our central estimate of 307 Gt CO2.”).

41 United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement, FCCC/CP/2015/L.9, (“Emphasizing with serious concern the urgent need to address the significant gap between the aggregate effect of Parties’ mitigation pledges in terms of global annual emissions of greenhouse gases by 2020 and aggregate emission pathways consistent with holding the increase in the global average temperature to well below 2 °C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C,”).

paper being offered by York International Corp., a major manufactu

building owners and industrial plant managers have a chance to turn adversity into opportunity.

ASHRAE

Todesco G. (2005) replacing an old CFC chiller in five years or less in virtually all locations that cool for more than three months a year.

installations and through concurrent investments to reduce building cooling load. Today’s chillers use about one

generation and associated greenhouse gas emissions by up to 50% o

THE EARTH

started looking at their design in order to change from CFC

The SLCP percentages are derived from Fig. 2C in Hu A., et al. (2013) Mitigation of short-lived climate pollutants slows sea-level rise, NATURE CLIMATE CHANGE 3(8):730–734; see also IGSD Press Release (14 April 2013), Reducing Air Pollution, Chemical Coolants Can Quickly Cut Sea-Level Rise, and accompanying summary of Hu, et al.’s study.

Zickfeld K., et al. (2017) Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases, Proc. Nat’l Acad. Sci. U.S.A. 114(4):657–662 (“CFCs, HCFCs, and HFCs are much shorter-lived than CO2 and yet cause sea-level rise that also persists for centuries. We have shown that choices made to phase out the CFCs and HCFCs during the 20th century under the Montreal Protocol have avoided a considerable amount of TSLR. If the CFCs and HCFCs had not been phased out until 2050, an additional 13.8 cm (4.5–14.0 cm) of TSLR would be expected by the end of this century, with continuing contributions for many centuries to come; this finding attests to the long-term value of the Montreal Protocol in avoiding a world with significantly higher sea levels.”).

De Larminat P. (2013) Development of Climate Friendly Alternatives for Chillers (presentation at Bangkok Technology Conference, 29 June 2013) (“In practice, the share of indirect emissions is around 90/95% of total emissions. Can range from 70% to more than 98% depending on the application.”).

Speech, Shende R. 2009 U.S.EPA’s Stratospheric Ozone Protection and Climate Protection Awards (21 April 2009) (“Humanity has already benefited by about 60% improvement in energy efficiency in domestic refrigerators since the industry started looking at their design in order to change from CFC-12.”); and U.S. E.P.A. (2002) BUILDING OWNERS SAVE MONEY, SAVE THE EARTH; REPLACE YOUR CFC AIR-CONDITIONING CHILLER, 6–7 (“The most energy-efficient new chillers will reduce electric generation and associated greenhouse gas emissions by up to 50% or more compared to the CFC chillers they replace.”).

U.S. EPA (2002) BUILDING OWNERS SAVE MONEY, SAVE THE EARTH; REPLACE YOUR CFC AIR-CONDITIONING CHILLER, 2 (“Building owners around the world have saved millions of dollars in electricity bills by upgrading air conditioning chiller installations and through concurrent investments to reduce building cooling load. Today’s chillers use about one-third or less electricity compared to those produced just two decades ago. Building owners can typically pay back the investment cost of replacing an old CFC chiller in five years or less in virtually all locations that cool for more than three months a year.”); and Todesco G. (2005) CHILLERS + LIGHTING + TES: WHY CFC CHILLER REPLACEMENT CAN BE ENERGY-SAVINGS WINDFALL, ASHRAE JOURNAL 47(3):18, 18 (“These CFC chillers serve an estimated 3.4 billion to 4.7 billion ft3 (315 million to 440 million m3) of commercial floor space with a total electricity consumption of 49,000 to 66,000 GWh/year, and an annual electricity operating cost of $3.4 billion to $4.8 billion. In addition, the cooling and lighting loads in these buildings contribute an estimated 3,600 to 9,200 MW to the summer peak demand of North American utilities. The electricity consumption and peak electrical demand can be reduced significantly by replacing the remaining CFC chillers with new efficient plants. The performance of chillers has improved significantly in the last 12 years compared to chillers manufactured in the 1970s and 1980s.”).

Press Release, York International, Taking the bite out of CFC replacement by improving air conditioning efficiency (14 February 1996) (“Now that production of chlorofluorocarbons (CFCs) has ended, the majority of commercial and institutional building owners and industrial plant managers have a chance to turn adversity into opportunity. That’s the premise of a white paper being offered by York International Corp., a major manufacturer of chillers -- the large refrigeration machines at the heart of most large-building air-conditioning systems. While there’s no escaping eventual replacement or conversion of the 60,000 or
more air-conditioning systems in the U.S. that use CFCs as refrigerants, the good news, according to York International, is that the energy efficiency of these systems can be dramatically improved with new technology, meaning quicker paybacks and long-term cost savings. The savings, in fact, have been calculated to range between $200,000 and $2 million, depending on local weather conditions, over a 25-year operating life.”).

54 GEF (2009) CHILLER ENERGY EFFICIENCY PROJECT, 4 (“Given chillers normally consume more than 30% of the total energy consumption in large commercial buildings and industrial establishments, implementation of this project would support India’s efforts in reaching its goal and also in raising awareness of the potential energy savings in large energy consumers.”).

55 Climate and Clean Air Coalition (CCAC) (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROpane, CO2, AND HFO CASE STUDIES, 30 (For example, in one of the case studies, “it is projected that the carbon footprint of the store will be reduced by 85% relative to a baseline store. Of the 85% reduction, 58% is attributable to reduced energy use while the remaining 27% is attributable to the direct emissions avoided by using propane as the refrigerant.”). Similar energy efficiency gains have been achieved in India. ATMosphere (2014) ATMOSPHERE ASIA 2014 SUMMARY REPORT.

56 Press Release, The White House Office of the Press Secretary, Leaders from 100+ Countries Call for Ambitious Amendment to the Montreal Protocol to Phase Down HFCs and Donors Announce Intent to Provide $80 Million of Support (22 Sept 2016) (“[A] group of donor countries and philanthropists announced their intent to provide $80 million in support to help countries in need of assistance (i.e., Article 5 countries) implement an ambitious amendment and improve energy efficiency.”).

57 Press Release, The White House Office of the Press Secretary, Leaders from 100+ Countries Call for Ambitious Amendment to the Montreal Protocol to Phase Down HFCs and Donors Announce Intent to Provide $80 Million of Support (22 Sept 2016) (“Together, this funding will enable Article 5 countries to begin developing programs to track and reduce HFCs and help their consumers and businesses realize the net economic benefits from energy efficiency as they transition to HFC alternatives. Today’s announcement from philanthropists represents the single largest private grant ever made in this sector for energy efficiency. Based on our own experience in the United States, this scale of investment could yield billions of dollars in economic benefits for Article 5 countries and help to offset any upfront costs associated with transitioning past HFCs.”).

60 Shah N., et al. (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, (“While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050.”).

61 Shah N., et al. (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, 26 (“The world room air conditioner market is growing fast with increasing urbanization, electrification, rising incomes and falling air conditioner prices in many developing economies. We estimate an additional 700 million units will be added to the global AC stock by 2030 and 1.6 billion by 2050 under current trends. In the absence of policy to mitigate the impact of this growth, it is expected to have a large-scale impact on electricity generation capacity and peak load particularly in economies with hot climates, and contribute significantly to GHG emissions.”).

62 Shah N., et al. (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory; See also Natural Resources Defense Council (2012) Bhaskar Deol Guest Blog: Reducing Delhi’s Power Crunch Through Appliance Efficiency (“Two recent studies, one by Maharatna Electricity Regulatory Commission (MERC), and another by India’s Bureau of Energy Efficiency (BEE), show that AC power demand forms a lion’s share of peak demand in Indian cities. The MERC study pegs power demand from ACs at 40% of the total demand for the city of Mumbai in a peak summer month and the BEE study estimates that a staggering 60% of peak demand is used up by air-conditioners.”); and The Economic Times, Air Conditioner Sales Soar up to 30 percent (4 June 2013) (“The sizzling summer may have made consumers bear the brunt of heat but air conditioner makers are laughing all the way to the bank with sales soaring by up to 30 per cent this season.”).

63 Phadke A., et al. (2014) AVOIDING 100 NEW POWER PLANTS BY INCREASING EFFICIENCY OF ROOM AIR CONDITIONERS IN INDIA: OPPORTUNITIES AND CHALLENGES, Lawrence Berkeley National Laboratory, 16–17, Table 4 (“We estimate that about 30% of the urban households are likely to own a room air conditioner by 2020 and about 73% are likely to own a room air conditioner by 2030.”).

64 Shah N., et al. (2015) BENEFITS OF LEAPFROGGING TO SUPEREFFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, 28 (“For example, air conditioning represents about 30% of current and forecasted summer load in warm climates such as California, about 40-60% of the total summer load on typical summer days in metropolitan areas in hot climates like Delhi, India compared to typical winter days and can even triple summer load in very hot areas such as New South Wales, Australia.”).

47
...
Montreal Protocol Technology and Economic Assessment Panel (2010) \textit{TEAP 2010 Progress Report, Vol I}, 4 ("Choosing the lowest GWP substance in the technology replacing HFCs may not always be the optimum approach because the GHG emissions from product manufacturing and product energy use often dominate the life-cycle carbon footprint.").

U.S. EPA (2013) \textit{Benefits of Addressing HFCs under the Montreal Protocol}, Tables 4-6; see also Climate and Clean Air Coalition (CCAC) (2014) \textit{Low-GWP Alternatives in Commercial Refrigeration: Propane, CO\textsubscript{2}, and HFO Case Studies}, 5 ("Research was conducted to generate a list of potential case studies for consideration taking into account all of the currently available zero- and low-GWP refrigerants in commercial refrigeration applications, including "natural" refrigerants, such as hydrocarbons, carbon dioxide (CO\textsubscript{2}), and ammonia, as well as the other major category of alternatives comprising man-made chemicals such as the unsaturated HFCs known as hydrofluoroolefins (HFOs). HFOs are a new class of unsaturated HFC refrigerants which have lower GWPs and shorter atmospheric lifetimes when compared to other HFCs.").

Myhre G., et al. (2013) \textit{Chapter 8: Anthropogenic and Natural Radiative Forcing}, in IPCC (2013) \textit{Climate Change 2013: The Physical Science Basis}, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Table 8.A.1. R-32 systems require one-third less refrigerant charge for equivalent capacity, and achieve higher energy efficiency than the higher-GWP HFCs or hydrocarbons in room air conditioners at high ambient temperatures. See Yajima R., et al. (2006) \textit{R32 As a Solution for Energy Conservation and Low Emission}, \textit{International Refrigeration and Air Conditioning Conference} Paper, 509 ("By adoption of smaller diameter tubes for heat exchangers, with R32 the refrigerant charge amount can be reduced to 57% of that of R22 mother unit and with R410A to 62%. As for the heat exchanger performance, both the condensing and cooling heat-exchanging capacity increase and the COP [Coefficient of Performance] improves by adoption of smaller diameter tubes. …We can reduce TEWI [Total Environmental Warming Impact] by 18% in comparison with R410A. The direct warming impact decreases down to 7% of TEWI in case of R32.") and Hideki Tsujii and Hiroyuki Imada (2013) \textit{System Drop-In Test of Refrigerant R-32 in a VRF Multi-Split Heat Pump} ("R32 makes performance higher with 83% of R410A charge in case of using the existing R410A system… R32 contributes to improvement in both capacity and EER [Energy Efficiency Ratio]/COP.")

Kujak S. & Schultz K. (2016) \textit{Optimizing the Flammability and Performance of Next Generation Low GWP R410A Replacements}, 2016 ASHRAE Winter Conference—Papers, 1 ("Lower global warming potential (GWP) refrigerant replacements for R410A have been extensively studied over the past few years with limited success in finding an optimal replacement. Refrigerant candidates offered to date have been a trade-off of GWP to performance, but so far candidates have not been offered that trade GWP to flammability while preserving or improving performance of R410A to allow for quick and orderly transition to lower GWP refrigerants. These refrigerants have been either pure R32 or blends of R32 with various new olefin refrigerants, like R1234yf and R1234ze(E), along with other traditional hydrofluorocarbons. Pure R32 has good performance, but would require significant hardware redesign to accommodate fluid properties differences, the GWP is one of the highest (GWP=675), as well as being one of the more flammable refrigerants (burning velocity 6.7 cm/sec). Performance modelling, unit performance testing, and flammability studies were conducted to guide the best refrigerant design to optimize GWP to flammability for blends of R32, R1234yf and R125. This study determined that in fact flammability can be minimized while allowing for a R410A "design compatible" refrigerant that improves on the performance of R410A while balancing GWP.").

86 Press Release, Honeywell, \textit{Honeywell Partners With Indian Manufacturer To Increase Supply Of Low-GLOBAL-Warming-Potential Auto Refrigerant} (21 March 2016) ("Honeywell…announced today that it has entered into a supply agreement and technology license with an Indian manufacturer to produce Honeywell Solstice® yf, an automobile refrigerant with a global warming potential of less than 1. Honeywell will license its proprietary process technologies to produce the refrigerant to Navin Fluorine International Limited (NFIL), which will manufacture Solstice yf in India exclusively for Honeywell. Small-scale production is expected to begin by the end of 2016. This agreement is in line with Honeywell’s commitment to meet growing demand through a robust global supply infrastructure. Honeywell and its key suppliers are investing approximately $300 million
to increase global production capacity for Solstice yf, including the construction of a new, world-scale manufacturing plant using new process technology at the company's existing Geismar, La., refrigerants manufacturing site.”

87 Press Release, Daimler, **Mercedes-Benz to equip first vehicle models with CO₂ air conditioning systems** (20 October 2015).

88 U.S. E.P.A. (2013) **BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL.** 19 (“In 2011, approximately 16% of new refrigerated truck and trailer systems sold in Norway were equipped with cryogenic refrigeration systems. One of Norway’s largest food distributors has committed to making cryogenic system-equipped vehicles the standard for all of their future purchases. In addition, a major manufacturer of cryogenic systems has partnered with one of Norway’s largest refrigerant suppliers to provide CO₂ filling stations across the country. Cryogenic systems are currently used in other European countries (e.g., Sweden, Denmark, Finland, France, the Netherlands, and Germany), and are being piloted in the United States.”).

95 UNEP (2011) **HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT.** 29.

96 UNEP (2011) **HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT.** 29.

98 Honeywell (2013) **Honeywell Solstice Liquid Blowing Agent** (“Performance: Up to 10-12% better than hydrocarbon (Cyclopentane); 2% better than HFC-245fa. We expect even more as formulations are fine-tuned.”); see also Press Release, Whirlpool Corporation, **Whirlpool Corporation Partners with Honeywell, Announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators** (22 January 2014) (“The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigeration.”); and Arkema (2013) **Forane 1233zd Blowing Agent: Technical Profile**.

100 Schwarz W., et al. (September 2011), **PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) No 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES, FINAL REPORT**, Annex IV: Global Data/Input Sheets; see also Zeiger B., et al. (2014) **ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES.**

102 Schwarz W. et al. (September 2011), **PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) No 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES, FINAL REPORT**, Annex VI Abatement technologies by sectors; see also Zeiger B., et al. (2014) **ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES** (“An analysis by sectors shows that a climate-friendly replacement for the current and future of HCFCs and high GWP HFCs is possible in most applications: • 55% of HCFCs can be replaced by natural refrigerants and foam blowing agents and additional 13% by unsaturated HFCs (i.e. HFOs) in the short term. • 22% of HCFCs can be replaced in the short term by HFCs with moderate GWP and by HFCFHO blends in the medium term. • Alternatives for the remainder are not yet available at the same efficiency level and at feasible cost. Here, low GWP solutions are expected by 2025.”)

The development of modern (i.e., energy-efficient and climate-resilient) and affordable district energy systems in cities is one of the least-cost and most-efficient solutions for reducing greenhouse gas emissions and primary energy demand. A transition to such systems, combined with energy efficiency measures, could contribute as much as 58 per cent of the carbon dioxide (CO₂) emission reductions required in the energy sector by 2050 to keep global temperature rise to within 2–3 degrees Celsius. District energy is a proven energy solution that has been deployed for many years in a growing number of cities worldwide. In several European cities, such as Copenhagen (Denmark), Helsinki (Finland) and Vilnius (Lithuania), nearly all of the required heating and cooling is supplied via district networks. The largest district cooling capacity is in the United States, at 16 gigawatts-thermal (GWh), followed by the United Arab Emirates (10 GWh) and Japan (4 GWh)."

U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20–21; see also Climate and Clean Air Coalition (CCAC) (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO₂, AND HFC CASE STUDIES.

U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20–21; see also Climate and Clean Air Coalition (CCAC) (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO₂, AND HFC CASE STUDIES.

UNEP (2015) DISTRICT ENERGY IN CITIES: UNLOCKING THE POTENTIAL OF ENERGY EFFICIENCY AND RENEWABLE ENERGY, 11 (!"The development of modern (i.e., energy-efficient and climate-resilient) and affordable district energy systems in cities is one of the least-cost and most-efficient solutions for reducing greenhouse gas emissions and primary energy demand. A transition to such systems, combined with energy efficiency measures, could contribute as much as 58 per cent of the carbon dioxide (CO₂) emission reductions required in the energy sector by 2050 to keep global temperature rise to within 2–3 degrees Celsius. District energy is a proven energy solution that has been deployed for many years in a growing number of cities worldwide. In several European cities, such as Copenhagen (Denmark), Helsinki (Finland) and Vilnius (Lithuania), nearly all of the required heating and cooling is supplied via district networks. The largest district cooling capacity is in the United States, at 16 gigawatts-thermal (GWh), followed by the United Arab Emirates (10 GWh) and Japan (4 GWh)."

U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, 20–21; see also Climate and Clean Air Coalition (CCAC) (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO₂, AND HFC CASE STUDIES.

Carvalho S., et al. (2014) ALTERNATIVES TO HIGH-GWP HYDROFLUOROCARBONS, 38. See also Shah N., et al. (2015) BENEFITS OF LEAPPROGGING TO SUPERRFICIENCY AND LOW GLOBAL WARMING POTENTIAL REFRIGERANTS IN AIR CONDITIONING, Ernest Orlando Lawrence Berkeley National Laboratory, 26 (Table 9 “Relative contribution to overall GHG benefits from efficiency versus refrigerant transition”).

Zeiger B., et al. (2014) ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES (“An analysis by sectors shows that a climate-friendly replacement for the current and future of HCFCs and high GWP HFCs is possible in most applications: • 55% of HCFCs can be replaced by natural refrigerants and foam blowing agents and additional 13% by unsaturated HFCs (i.e. HFOs) in the short term. • 22% of HFCs can be replaced in the short term by HFCs with moderate GWP and by HFC/HFO blends in the medium term. • Alternatives for the remainder are not yet available at the same efficiency level and at feasible cost. Here, low GWP solutions are expected by 2025.”)

Zeiger B., et al. (2014) ALTERNATIVES TO HCFCs/HFCs IN DEVELOPING COUNTRIES WITH A FOCUS ON HIGH AMBIENT TEMPERATURES.

Oak Ridge National Laboratory (2015) Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-41A Alternatives for Mini-Split Air Conditioners, 35 (“This performance evaluation shows that viable replacements
exist for both R-22 and R-410A at high ambient temperatures. Multiple alternatives for R-22 performed well, and most R-410A alternatives matched or exceeded the performance of R-410A.”)

119 Oak Ridge National Laboratory (2016) Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners, xix (‘‘This performance evaluation shows that viable replacements exist for both R-22 and R-410A at hightemperature temperatures. Multiple alternatives for R-22 performed well, and many R-410A alternatives performed as well as, and often better than, R-410A, making them prime candidate refrigerants. Prior to commercialization, manufacturers’ engineering optimization can address performance loss, the increase in compressor discharge temperature that the R-410A alternatives exhibited, and any safety concerns for flammable alternatives.”)

120 See, e.g., Davos 2014: Achim Steiner Insider Diary (25 January 2014) Guardian Sustainable Business Blog (statement by UN Under-Secretary General and Executive Director of the UN Environment Programme Achim Steiner: ‘‘Next came ‘short-lived climate pollutants’ - part of this years’ Davos focus on climate change. After working in UNEP for five years to mature cutting edge science into options for action, one of those Davos moments happened. Major business leaders and public officials agreed to join hands in moving on HFCs, methane and black carbon, which drive global warming but also affect our health and economies. Its like teeth wheels clicking into place - you know you have changed gears.”).

122 Press Release, Consumer Goods Forum, Consumer Goods Industry Calls for Positive Next Steps to Continue Scale-Up of Low Carbon Refrigeration (20 January 2016) (‘‘Emma Coles, Vice President, Responsible Retailing at Albert Heijn and Royal Ahold, and Andre Fournie, Senior Manager, Environmental Value at SABMiller plc, Co-Chairs of CGF’s Refrigeration Working Group, said, ‘The CGF has been a leading voice on phasing out harmful HFC refrigerants since 2010. And, although 2015 is now over, we remain committed to helping members amplify the impact of their solutions and in bringing the entire industry forward. With this in mind, the Board has called on the CGF’s Sustainability team to look forward and discuss how best to drive scale-up beyond 2015, including the possibility of a new resolution.”).

123 Air-Conditioning, Heating, and Refrigeration Institute AHRI Responds to President Obama’s Climate Change Plan (2 July 2013) (‘‘AHRI supports the continued efforts by the United States and its North American partners to engage in discussions at the Montreal Protocol, especially the North American amendment regarding the future of HFCs…”).

124 European Fluorocarbon Technical Committee [EFTC] (2012) HFC Producers Support Action Under the Montreal Protocol for a Consumption Cap and Reduction of HFCs (31 Oct. 2012) (‘‘[EFTC] would like to take the opportunity to encourage Parties to the Montreal Protocol to move forward with a constructive dialogue to achieve an agreement for a global cap and reduction for HFC consumption on a GWP- weighted basis.”) The members of the EFTC are Mexichem Flour, Arkema, Chemours, Solvay Fluor, and Honeywell Fluorine Products. It is a sector group of The European Chemical Industry Council.

125 Refrigerants, Naturally! Refrigerants, Naturally! Calls for An Immediate HFC-Phaseout Under the Montreal Protocol (June 2013) (Refrigerants, Naturally! members, including PepsiCo, Red Bull, Coca-Cola, and Unilever, “support the proposed amendments to include HFCs in the Montreal Protocol in cooperation with the UNFCCC. An international agreement to bring HFCs into the regulatory regime of the Montreal Protocol would be an important step towards a phase-down and eventual phase-out of these substances.”).

126 The Alliance for Responsible Atmospheric Policy (2015) Statement of The Alliance for Responsible Atmospheric Policy at the EPA/State Department Stakeholder Meeting (2 March 2015) (‘‘In September of last year, the Alliance had the opportunity to participate in an HFC industry roundtable discussion hosted at the White House. We announced our support for global and domestic efforts to reduce the emissions of high-GWP HFCs and to promote technology innovation for low-GWP substitute compounds and technologies. Numerous Alliance member companies also made specific commitments towards these goals. In sum, the Alliance pledged to take actions and support policies to reduce global HFC use by 80 percent by 2050. We further emphasized these goals the following week at the United Nations Secretary General’s Summit, where we were invited to outline the HFC action plan of the global Climate and Clean Air Coalition (CCAC),”); and The Alliance for Responsible Atmospheric Policy (2011) Industry Actions to Responsibly Meet Society’s Needs: Refrigeration, Air Conditioning, Thermal Insulation and Other Applications (‘‘The Alliance for Responsible Atmospheric Policy (Alliance) supports a planned, orderly phasedown of substances with high global warming potentials (GWPs), improved application energy efficiency, leakage reduction, and recovery/reuse or destruction at application end-of-life.”).

Alliance Highlights Climate Progress on HFCs (5 December 2015) (“Significant progress has been made in the effort to manage HFC emissions under the Montreal Protocol treaty,” said Alliance Executive Director Kevin Fay, “industry in the United States and around the globe has contributed to the policy discussions in a major way, in addition to the enormous commitment to development of low-global warming potential compounds and technologies that will replace the current HFC technologies.”).

Climate and Clean Air Coalition (CCAC) (2014) **Low-GWP Alternatives in Commercial Refrigeration: Propane, CO2, and HFO Case Studies.**

Refrigerants, Naturally! **History and Achievements.** (2013).

Coca-Cola **Cooler Choice: Freezing Out HFC In Favor Of Natural Refrigerant** (22 January 2014) (Coca-Cola reports that “we have placed the 1 millionth HFC-free cooler, using natural refrigerant, in the marketplace. This marks significant progress toward our 2015 system-wide goal for all new cold-drink equipment to be HFC-free.”).

Refrigerants Naturally! **PepsiCo** (2013); Red Bull (2013) **Efficient Cooling; Unilever** (2014) **Targets & Performance; Fleury J-M (2011) Roll out and Experience of Natural Refrigerants based technology at Carrefour, presentation at ATMOSphere Europe 2011, Brussels, 11-12 October 2011; and U.S. EPA (2013) Benefits of Addressing HFCs Under the Montreal Protocol (“Sanyo has produced CO2 compressors since 2001, originally developed for heat pump water heaters. Using this technology, Sanyo developed the first CO2 vending machine, which was field tested in February 2004 in Australia. Results from these tests showed that the CO2 system consumed 17% less energy compared to the comparable HFC-134a system during the summer season. Beginning in 2005, CO2 vending machines and groups began being sold in Japan and have represented a significant and growing portion of the Japanese market—estimated at 116,000 units in 2010.”).

Press Release, Whirlpool Corporation, **Whirlpool Corporation Partners with Honeywell, Announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators** (22 January 2014) (“Whirlpool Corporation announced it has implemented the use of Honeywell’s Solstice® Liquid Blowing Agent [HFO-1233zd(E)], into its environmentally responsible and energy efficient insulation used in U.S.-made refrigerators and freezers. The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator. The conversion of all U.S. manufacturing centers is scheduled to be completed by the end of 2014 and the impact to the global warming effect will be the equivalent of removing more than 400,000 cars from the road.”).

Press Release, The White House Office of the Press Secretary, **Leaders from 100+ Countries Call for Ambitious Amendment to the Montreal Protocol to Phase Down HFCs and Donors Announce Intent to Provide $80 Million of Support** (22 Sept 2016) (“Building on the announcements in New York today, more than 500 national and international companies and organizations and hundreds of sub-national governments are also calling – individually and/or through their associations – for an ambitious amendment to the Montreal Protocol and have issued the following statement: *By avoiding up to 0.5°C of warming by the end of the century, a Montreal Protocol hydrofluorocarbon (HFC) phasedown amendment is one of the most significant steps the world can take now to deliver on the goals of the Paris Agreement. Today, we call upon world leaders to adopt in October an ambitious amendment to the Montreal Protocol, including an early first reduction step for Article 2 countries and a freeze date for Article 5 countries that is as early as practicable, and we declare our intent to work to reduce the use and emissions of high-global-warming-potential HFCs and transition over time to more sustainable alternatives in a manner that maintains or increases energy efficiency. Signatories of the statement include the following companies, organizations, and associations: 3M; Air-Conditioning, Heating, and Refrigeration Institute (AHRI); Airgas; The Alliance for Responsible Atmospheric Policy; Arkema; Aspen Skiing Company; Aveda; Ben & Jerry’s Homemade Inc.; Berkshire Hathaway Energy; BioAmber Inc.; Brazilian Association for HVAC-R (ABRAVA); Business for Innovative Climate & Energy Policy (BICEP); CA Technologies; Cap & Seal Co.; Catalyst Paper; Ceres; CH2M; The Chemours Company; Daikin U.S. Corporation; Danfoss; Dell Inc.; The Dow Chemical Company; DSM; Dynatemp International; Eileen Fisher; Emerson Climate Technologies; Environmental Entrepreneurs (E2); European Partnership for Energy and the Environment (EPEE); Falcon Safety Products; Gap Inc.; General
The Consumer Good Forum has published a Refrigeration Booklet detailing examples from its “retailer and manufacturer members on how they are phasing out HFCs and successfully piloting and implementing natural refrigeration alternatives.” See Consumer Goods Forum (2016) Refrigeration Commitments & Achievements of CFG Members.

Press Release, Whirlpool Corporation, Whirlpool Corporation Partners with Honeywell, Announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators (22 January 2014) (“Whirlpool Corporation announced it has implemented the use of Honeywell's Solstice® Liquid Blowing Agent [HFO-1234zd(E)], into its environmentally responsible and energy efficient insulation used in U.S.-made refrigerators and freezers. The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator. The conversion of all U.S. manufacturing centers is scheduled to be completed by the end of 2014 and the impact to the global warming effect will be the equivalent of removing more than 400,000 cars from the road.”) Honeywell further states that its new product will improve energy efficiency by 2% over HFC-245fa, and by 10-12% over hydrocarbon (Cyclopentane)."

China State Council (2014) 2014–2015 Energy Conservation, Emissions Reduction and Low Carbon Development Action Plan (in Chinese) (为了确保全面完成‘十二五’节能减排降碳目标，制定本行动方案……加强对氢氟碳化合物（HFCs）排放的管理，加快氢氟碳化合物销毁和替代，‘十二五’期间累计减排2.8亿吨二氧化碳当量)" (English translation: “The action plan is made in order to meet all the energy conservation and emission reduction targets set for the twelfth five year period…. Strengthen the management of HFCs emission. Accelerate the destruction and replacement of HFCs. The total emission reduction of HFCs should reach 0.28 billion tonnes CO2-eq during the twelfth five-year period.”).

Velders G. J. M., et al. (2015) Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions, Atmospheric Environ., 123:200–209, 206 ("The success of EU, USA and Japan regulations likely will require changes in sector technologies that currently use high-GWP HFCs. Furthermore, the availability of new technologies is likely to cause some reductions in the use of high-GWP HFCs in other countries, thereby increasing the climate benefits of these national regulations. If global adoption of these technology changes is assumed, the response of the baseline scenario is a reduction in emissions from 4.0–5.3 to 1.5–1.9 GtCO2-eq yr−1 by 2050… Cumulative emissions are reduced by 38–46 GtCO2-eq, from 91–105 to 53–59 GtCO2-eq, over the 2015–2050 period… Similarly, if global adoption of the technologies required to meet the USA SNAP changes is assumed, the response is a reduction in global emissions to 1.9–2.5 GtCO2-eq yr−1 by 2050 and a reduction in cumulative emissions by 36–44 GtCO2-eq over 2015–2050. Similar reductions in emissions are found for..."
the Japanese regulations: emissions reduced to 2.0–2.6 GtCO₂-eq yr⁻¹ by 2050 and a cumulative reduction of 28–35 GtCO₂-eq over 2015–2050. Thus, assuming the global adoption of any one of these national regulations reduces global HFC emissions by 50–65% by 2050."

154 Executive Office of the President (2013) The President’s Climate Action Plan, 10 (“Hydrofluorocarbons (HFCs), which are primarily used for refrigeration and air conditioning, are potent greenhouse gases. In the United States, emissions of HFCs are expected to nearly triple by 2030, and double from current levels of 1.5 percent of greenhouse gas emissions to 3 percent by 2020. To reduce emissions of HFCs, the United States can and will lead both through international diplomacy as well as domestic actions. In fact, the Administration has already acted by including a flexible and powerful incentive in the fuel economy and carbon pollution standards for cars and trucks to encourage automakers to reduce HFC leakage and transition away from the most potent HFCs in vehicle air conditioning systems. Moving forward, the Environmental Protection Agency will use its authority through the Significant New Alternatives Policy Program to encourage private sector investment in low-emissions technology by identifying and approving climate-friendly chemicals while prohibiting certain uses of the most harmful chemical alternatives. In addition, the President has directed his Administration to purchase cleaner alternatives to HFCs whenever feasible and transition over time to equipment that uses safer and more sustainable alternatives.”); See also Bianco N. et al. (2013) Can the U.S. Get There from Here?: Using Existing Federal Laws and State Action to Reduce Greenhouse Gas Emissions, World Resources Institute, 1.

155 In 2013, Congressman Peters (D-California) introduced the Super Pollutant Emissions Reduction Act. This was followed by the Senate Super Pollutants Act, introduced by a bipartisan team of senators Murphy (D-Connecticut) and Collins (R-Maine). See H.R. 1943 (2013) Super Act of 2013; 113th Congress 1st Session (introduced); and S. 14456 (2014) Super Pollutants Act of 2014, 113th Congress 2nd Session. Both bills were reintroduced for the 114th Congress (2015-2016). See S.2076 (2015) Super Pollutants Act of 2015; and H.R.508 (2015) Super Act of 2015. In addition, 16 members of the U.S. Congress sent a letter in December 2013 urging U.S. EPA Administrator Gina McCarthy to use the agency’s authority to reduce the use of HFCs in the U.S. (“We are writing to ask your agency to pursue commonsense policies that accelerate the replacement phasedown of hydrofluorocarbons (HFCs) in this country and globally. … We encourage you to focus your agency on HFC applications where technology solutions and alternative products are already available or soon to be in the market, similar to what the European Union has done with their Mobile Air Conditioning Directive. The agency should look to where market transitions are already underway and where EPA action could hasten the pace of those transitions, both domestically and elsewhere. We think that such actions would not only have significant cost-effective environmental benefits but would also strengthen the Administration’s hand in the Montreal Protocol negotiations.”) Press Release, Office of U.S. Senator for Delaware Tom Carper, Members of Congress Urge EPA Administrator McCarthy to Reduce Use of Harmful Climate Change-Causing Pollutant (4 December 2013).

156 The White House Office of the Press Secretary, EO 13693 Planning for Federal Sustainability in the Next Decade (19 March 2015) (“Through a combination of more efficient Federal operations such as those outlined in this Executive Order (order), we have the opportunity to reduce agency direct greenhouse gas emissions by at least 40 percent over the next decade while at the same time fostering innovation, reducing spending, and strengthening the communities in which our Federal facilities operate. *** ii) purchasing sustainable products and services identified by EPA programs including: (A) Significant New Alternatives Policy (SNAP) chemicals or other alternatives to ozone-depleting substances and high global warming potential hydrofluorocarbons, where feasible, as identified by SNAP.”).

157 U.S. Federal Register, Federal Acquisition Regulation; High Global Warming Potential Hydrofluorocarbons (11 May 2015) (“DoD, GSA, and NASA are proposing to amend the Federal Acquisition Regulation (FAR) to implement Executive branch policy in the President's Climate Action Plan to procure, when feasible, alternatives to high global warming potential (GWP) hydrofluorocarbons (HFCs). This will allow agencies to better meet the greenhouse gas emission reduction goals and reporting requirements of the Executive Order (E.O.) 13693 of March 25, 2015, Planning for Sustainability in the Next Decade. E.O. 13693 subsumes both E.O. 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management as well as E.O. 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic Performance. *** This rule proposes to modify the existing FAR clauses at 52.223-11, Ozone-Depleting Substances, and 52.223-12, Refrigeration Equipment and Air Conditioners, to address high GWP HFCs, as well as ozone-depleting substances. In addition, the rule proposes to add two new clauses specifically focused on use of alternatives, where feasible, in place of high GWP HFCs in aerosol cans (as propellants or solvents) and as foam blowing agents.”).

160 U.S. EPA, Protection of Stratospheric Ozone: Update to the Refrigerant Management Requirements under the Clean Air Act, Advanced Version Final Rule (26 Sept 2016) (“This rule updates those existing requirements as well as extends them, as appropriate, to non-ozone depleting substitute refrigerants, such as hydrofluorocarbons. Updates include strengthened leak repair requirements, recordkeeping requirements for the disposal of appliances containing more than five and less than 50 pounds of
refrigerant, revisions to the technician certification program, and revisions for improved readability and compliance.”); see also U.S. EPA, Revised Section 608 Refrigerant Management Regulations (“This rule makes the following changes to the existing requirements under Section 608. 1) Extends the requirements of the Refrigerant Management Program to cover substitute refrigerants, such as HFCs. Note that EPA has previously exempted some substitutes from the Section 608 venting prohibition through previous rules. Such substitutes are also exempt from the requirements of this rule. 2) Lowers the leak rate thresholds that trigger the duty to repair refrigeration and air-conditioning equipment containing 50 or more pounds of refrigerant. 3) Requires quarterly/annual leak inspections or continuous monitoring devices for refrigeration and air-conditioning equipment that have exceeded the threshold leak rate 4) Requires owners/operators to submit reports to EPA if systems containing 50 or more pounds of refrigerant leak 125% or more of their full charge in one calendar year. 5) Extends the sales restriction to HFCs and other non-exempt substitutes, with the exception of small cans (containing 2 pounds or less) of non-exempt substitutes (e.g., primarily HFC-134a) for motor vehicle air conditioner servicing. These small cans can continue to be sold without technician certification so long as the small cans have a self-sealing valve to reduce refrigerant releases. 6) Requires technicians to keep a record of refrigerant recovered during system disposal from systems with a charge size from 5–50 lbs.”).

162 CA SB-605 (2014) Short-lived climate pollutants, (“SECTION 1. Chapter 4.2 (‘*** no later than January 1, 2016, the state board shall complete a comprehensive strategy to reduce emissions of short-lived climate pollutants in the state. * * * (d) For purposes of this section, “short-lived climate pollutant” means an agent that has a relatively short lifetime in the atmosphere, from a few days to a few decades, and a warming influence on the climate that is more potent than that of carbon dioxide.”).”)

164 California Air Resources Board (CARB) (2016) Short-Lived Climate Pollutant Reduction Strategy March 2017, 91 (“This SLCP Strategy describes a set of potential measures that can reduce HFC emissions by 40 percent in California by 2030. This set of measures has been designed to minimize regulatory requirements and achieve fast and assured emission reductions.”).

165 Environmental Defense Fund (EDF) (2015) California: An Emissions Trading Case Study, 4 (“The cap-and-trade program is composed of three compliance periods. . . The third compliance period will run from 2018 to 2020. The program applies to: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen trifluoride and other fluorinated GHGs. The system covers approximately 450 entities.”).

170 Congreso de los Diputados (2013) Boletín oficial de las cortes generales congreso de los diputados, serie A, num. 51-1, BOCG-10-A-54-1 (in Spanish); see also Ammonia 21 (July 2013) Spain Considers F-gas Tax at €20/kCO2eq.

171 OzoneAction, Turkey to strengthen legislation on ozone-depletion and fluorinated gases (18 February 2013).

173 UNEP (2009) Information on Hydrofluorocarbons and Perfluorocarbons Received from Developing Countries, UNEP/OzL.Pro/Workshop.4/INF/2, 2.

174 Brack, D. (2015) National Legislation on Hydrofluorocarbons, 16 (“The government provides support for the retrofitting of refrigeration systems (specifically refrigerators) and air-conditioning systems (split, window and rooftop types) to hydrocarbons. The government also possesses the power to apply control measures to the import of HFCs, though it is not clear whether these control measures have been applied.”)

The Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (2014) CCAC - Initiatives.

Xu Y., Zaelke D., Velders G. J. M., & Ramathan V. (2013) The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys. 13:6083–6089; see also World Meteorological Organization and UNEP (2014) Scientific Assessment of Ozone Depletion: 2014 (“This two-year effort by 280 scientists from 36 countries calculates that the success of the Montreal Protocol has put the stratospheric ozone layer on the path to recovery in the next few decades; that it also has provided climate mitigation of "about 10 gigatones of avoided CO2-equivalent emissions per year, which is about five times larger than the annual emissions reduction target for the first commitment period (2008–2012) of the Kyoto Protocol"; and that the high growth rate of HFCs threatens to cancel the treaty’s past climate mitigation."). See note 19 and Figure 4 for calculations of total climate mitigation provided by Montreal Protocol, which is 10 to 20 times more than total for Kyoto Protocol’s first commitment period.

Estrada F., et al. (2013) Statistically derived contributions of diverse human influences to twentieth-century temperature changes, Nature Geoscience 6:1050–1055 (“Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s.”).

Multilateral Fund Secretariat (2016) Welcome to the Multilateral Fund for the Implementation of the Montreal Protocol (“Contributions to the Multilateral Fund from developed countries, or non-Article 5 countries, are assessed according to the UN scale of assessment. As at 15 May 2015 the contributions made to the Multilateral Fund by some 45 countries (including Countries with Economies in Transition or CEIT countries) totaled over US$ 3.34 billion.”).

UNEP (2014) Report of the Tenth Meeting of the Conference of the Parties to the Vienna Convention for the Protection of the Ozone Layer and the Twenty-Sixth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL Conv.10/7 (“The parties agree] [t]o adopt a budget for the Multilateral Fund for the Implementation of the Montreal Protocol for 2015–2017 of $507,500,000 on the understanding that $64,000,000 of that budget will be provided from anticipated contributions due to the Multilateral Fund and other sources for the 2012–2014 triennium, and that $6,000,000 will be provided from interest accruing to the Fund during the 2015–2017 triennium.”); see also UNEP (2012) Report of the Sixty-Fifth Meeting of the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, UNEP/OzL Pro/ExCom/65/60/Corr.1, Annex 1.

UNEP (2011) Compliance Assistance Programme, Regional Networks of National Ozone Units.

decrease demand to 12 Gt CO\(_2\) which three increase when going from MIT 100 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ON

UNEP (2015) DECISION XXVI/9 UPDATE TASK FORCE REPORT ADDITIONAL INFORMATION ON ALTERNATIVES TO OZONE-DEPLETING SUBSTANCES, Report of the Technology and Economic Assessment Panel (September 2015) (“Conversion costs for HFCs are estimated at a factor of 1.5-2 higher than current HCFC funding experience. These two aspects together (25-35% addressed so far of HCFC consumption and 1.5-2 times higher costs for HFC conversions, taking into account the amount so far used for HCFC conversions), will lead to a total amount in the range of US$ 2200-2800 million. This is comparable to (and therefore consistent with) the funding range determined for the conversion of HFC new manufacturing in the MIT-3 scenario (and lower than for the MIT-4 and MIT-5 scenarios).”).

Compare estimated costs in Table 6-16 with the reduced demand in MIT-3 compared to BAU in table 6-10. UNEP (2015) DECISION XXVI/9 UPDATE TASK FORCE REPORT ADDITIONAL INFORMATION ON ALTERNATIVES TO OZONE-DEPLETING SUBSTANCES, Report of the Technology and Economic Assessment Panel (September 2015) (“Costs for manufacturing conversion only. The total costs calculated for manufacturing conversion in Article 5 Parties are estimated as follows: MIT-3 US$ 2300 ± 310 million; MIT-4 US$ 3010 ± 370 million; MIT-5 US$ 3220 ± 430 million.... Table 6-10 shows the following (rounded) integrated total refrigerant demand for the three scenarios for the period 2020-2030 in Mt CO2-eq. : BAU: 16,000 Mt CO2-eq. MIT-3: 6,500 Mt CO2-eq. MIT-4: 9,800 Mt CO2-eq. MIT-5: 12,000 Mt CO2-eq. The MIT-3 reduction from BAU of 9,500 Mt CO2-eq. represents a saving of 60%. In case of the MIT-4 scenario, with a reduction of about 6200 Mt CO2-eq., there is a saving of 40% from BAU. The MIT-5 reduction of 4,000 Mt CO2-eq. represents a saving of 30% from BAU only.”).

Oko-Rescherche GmbH, et al. (2010) PREPARATORY STUDY FOR THE REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES - WORKING DOCUMENT 1 - COVERING PRELIMINARY RESULTS FROM ONGOING ANALYSIS (TASKS 1-3), 53 (“The lower range is calculated on the basis of historic cost effectiveness criteria of the MLF applied under the present HCFC phaseout. The upper cost range is based on the experts’ estimates of actual incremental costs for conversions in each subsector and take into consideration that some of the low GWP alternatives to HFCs (such as HC and CO2) require more expensive transition and system changes similar to the approved HCFC guidelines.”). These estimates only consider identified alternatives, even though there will be further technical progress, and do not account for the offsetting cost savings if energy efficiency is implemented at the same time for refrigeration, air conditioning, and thermal insulating foam. Nor do these cost estimates account for the clean air benefits to health, agriculture, and ecosystems from the improved efficiency.

UNEP (2015) DECISION XXVI/9 UPDATE TASK FORCE REPORT ADDITIONAL INFORMATION ON ALTERNATIVES TO OZONE-DEPLETING SUBSTANCES, Report of the Technology and Economic Assessment Panel (September 2015) (“It is difficult to make an estimate what the costs for servicing would be. In the case of the MIT-3 scenario, the servicing amounts are in the order of 100-200 ktones during 2020-2030. The amounts decrease substantially between 2025 and 2030 (from 198 to less than 100 ktones, a 50% decrease) due to the fact that equipment reaches its end of life. Servicing is much higher in the MIT-5 scenario, in particular after 2025 until somewhere in the 2030’s.... In a first instance, servicing amounts, and costs to address servicing will increase when going from MIT-3, to MIT-4 and MIT-5. In the case of MIT-5 they could well be 40-160% larger dependent on which three-year period one considers (compare Figs. 5-15 and 5-24); the best estimate would be US$ 100-150 million per triennium.”).

Total HFC demand between 2020 and 2030 in the refrigeration and A/C sectors in Article 5 countries is expected to be 16 Gt CO2-eq under the business as usual scenario. Beginning the conversion to low-GWP alternatives in 2020 is expected to decrease demand to 6.5 Gt CO2-eq over the decade, a climate benefit of 9.5 Gt CO2-eq. Delaying the conversion until 2025 would only decrease demand to 12 Gt CO2-eq over the decade, producing a climate benefit of 4 Gt CO2-eq which is less than half the benefit of beginning the conversion in 2020. UNEP (2015) DECISION XXVI/9 UPDATE TASK FORCE REPORT ADDITIONAL INFORMATION ON ALTERNATIVES TO OZONE-DEPLETING SUBSTANCES, Report of the Technology and Economic Assessment Panel (September 2015).
parties to support a phasedown of HFCs under the Montreal Protocol. In 2013 the European Union also called on the UNFCCC to consider proposals to amend the Montreal Protocol, including those that have been submitted by India, the Federated States of Micronesia and Mauritius.

The amendment proposed by his country, set out in document UNEP/OzL.Pro.WG.1/33/4, which had subsequently been co-sponsored by the Maldives and Morocco. The amendment proposed that the Montreal Protocol should phase down the production and consumption of HFCs, as had been called for at Rio+20, while not affecting the responsibility of the Framework Convention on Climate Change and its Kyoto Protocol on HFC emissions. The rapid growth in the use of HFCs was undermining the achievements of the Montreal Protocol in reducing climate impacts. By phasing down the production and consumption of HFCs, the proposed amendment could reduce the rate of global temperature rise by 0.1°C by 2050 and as much as 0.5°C by 2100.

The rapid growth in the use of HFCs was undermining the achievements of the Montreal Protocol in reducing climate impacts. By phasing down the production and consumption of HFCs, the proposed amendment could reduce the rate of global temperature rise by 0.1°C by 2050 and as much as 0.5°C by 2100. Morocco and the Maldives offered support for FSM’s proposed amendment. UNEP (2013) REPORT OF THE THIRTY-THIRD MEETING OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEplete the OZONE LAYER, UNEP/OzL.Pro.WG.1/33/6, 20 (“The representative of the Federated States of Micronesia introduced the amendment proposed by his country, set out in document UNEP/OzL.Pro.WG.1/33/4, which had subsequently been co-sponsored by the Maldives and Morocco. The amendment proposed that the Montreal Protocol should phase down the production and consumption of HFCs, as had been called for at Rio+20, while not affecting the responsibility of the Framework Convention on Climate Change and its Kyoto Protocol on HFC emissions. The rapid growth in the use of HFCs was undermining the achievements of the Montreal Protocol in reducing climate impacts. By phasing down the production and consumption of HFCs, the proposed amendment could reduce the rate of global temperature rise by 0.1°C by 2050 and as much as 0.5°C by 2100.”).
upon and widen the support of G20 Leaders to phase down HFCs under the Montreal Protocol. As such we call on all Parties to the UNFCCC for their support, and would like to see this discussed specifically in Warsaw in the context of ADP WS2.”).

212 Proposed amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer submitted by Kiribati, the Marshall Islands, Mauritius, the Federated States of Micronesia, Palau, the Philippines, Samoa and Solomon Islands, UNEP/OzL.Pro.WG.1/resumed.37/6 (14 April 2016); Proposed amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer submitted by Canada, Mexico, and the United States of America, UNEP/OzL.Pro.WG.1/resumed.37/3 (14 April 2016); Proposed amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer submitted by the European Union and its member States, UNEP/OzL.Pro.WG.1/resumed.37/5 (14 April 2016); and Proposed amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer submitted by India, UNEP/OzL.Pro.WG.1/resumed.37/5 (14 April 2016).

213 Consolidation of the amendment proposals submitted by parties to the Montreal Protocol, UNEP/OzL.Pro.WG.1/resumed.37/INF/1 (7 June 2016).

214 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings”). See also UNEP News Centre (2015) Montreal Protocol Parties Devise Way Forward to Protect Climate Ahead of Paris COP21 (“The parties agreed to work together, within the Montreal Protocol, towards an HFC amendment in 2016 by first resolving challenges and generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings. This outcome was agreed after extensive negotiations during the 27th Meeting of the Parties (MOP27) to the Protocol, hosted by the Government of the United Arab Emirates in Dubai from 1 to 5 November.”).

215 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To recognize the progress made at the Twenty-Seventh Meeting of the Parties on the challenges identified in the mandate of the contact group agreed at the resumed thirty-sixth meeting of the Open-ended Working Group (listed in annex I to the present decision,) on the feasibility and ways of managing HFCs, including development of a common understanding on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity-building and the need for an exemption for high-ambient-temperature countries, and to endorse the concepts listed in annex II to the present decision.”). See also IISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1–5 November 2015 Earth Negotiations Bulletin 19(115) (“MOP 27 immediately followed the two-day resumed session of the 36th Open-ended Working Group (OEWG 36), which had agreed on a mandate for a contact group on the feasibility and ways of managing hydrofluorocarbons (HFCs). The contact group was established and HFCs were the “major topic” under debate throughout the week.”).

216 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (““To recognize that further progress still needs to be made, in particular with respect to other challenges identified in the contact group mandate, for example conversion costs, technology transfer and intellectual property rights.”). See also IISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1–5 November 2015 Earth Negotiations Bulletin 19(115) (“Following protracted negotiations that finally concluded in the early hours of Friday morning, parties agreed to a “roadmap” for negotiating an HFC amendment; this agreement included provision for an additional OEWG meeting and an extraordinary MOP in 2016.”). See also UNEP News Centre (2015) Montreal Protocol Parties Devise Way Forward to Protect Climate Ahead of Paris COP21 (“The parties recognized the progress made at MOP27 on discussing the challenges on feasibility and ways of managing HFCs, on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity building, and the need for an exemption for high ambient temperature countries. Further progress still needs to be made with respect to other challenges. The parties will continue their deliberations in 2016 with a series of Open-Ended Working Group meetings and others, including an extraordinary Meeting of the Parties.”).

217 See UNEP Ozone Secretariat, Upcoming Meetings (last accessed 19 Aug 2016).

218 UNEP (2016) Report of the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.28/12 (“Following a reading through of the proposed amendment text, and a discussion of the outstanding issues, the Meeting of the Parties adopted the text of the amendment as decision XXVIII/1 and the accompanying decision as decision XXVIII/2, as orally amended during the discussions.”); and UNEP (2016) Annex 1, in Report of the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.28/12; see also IISD Reporting Services (2016) Summary of the Twenty-eighth Meeting of the Parties to the Montreal Protocol: 10–14 October 2016, Earth Negotiations Bulletin 19(131), 1 (“MOP 28’s primary decision was to adopt the Kigali Amendment, which amended the Protocol to include hydrofluorocarbons (HFCs) as part of its ambit. MOP 28 also adopted a number of substantive and procedural decisions. Substantive decisions included: essential-use exemptions (EUEs) and critical-use exemptions (CUEs); and the Terms of Reference (TOR) for the study on the 2018–2020 replenishment of the Multilateral Fund (MLF). Procedural decisions adopted include: budget; organizational issues related to the Technology and Economic Assessment Panel; and membership of Montreal Protocol bodies.”).

219 G8 (2009) G8 Declaration: Responsible Leadership for a Sustainable Future (“66. We recognize that the accelerated phase-out of HCFCs mandated under the Montreal Protocol is leading to a rapid increase in the use of HFCs, many of which are
very potent GHGs. Therefore we will work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework. We are also committed to taking rapid action to address other significant climate forcing agents, such as black carbon. These efforts, however, must not draw away attention from ambitious and urgent cuts in emissions from other, more long-lasting, greenhouse gases, which should remain the priority.”).

220 UNEP (2009) Draft decisions and proposed amendments to the Montreal Protocol, UNEP/OzL.Pro.21/3 (“The Federated States of Micronesia and Mauritius submit the following proposals to amend the Montreal Protocol on substances that deplete the ozone layer (“Montreal Protocol”) to regulate and phase-down hydrofluorocarbons (“HFCs”) with a high global warming potential (“GWP”) and promote the destruction of banks of ozone-depleting substances (“ODS”). These proposals will strengthen the Montreal Protocol to provide fast-action climate change mitigation several times greater than the emission reductions sought during the first commitment period of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (respectively, the “Kyoto Protocol” and “UNFCCC”).”).

221 UNEP (2009) Declaration on High-GWP alternatives to ODSs, in UNEP (2009) Report of the Twenty-First Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (The 2009 Declaration was signed by Angola, Cameroon, Canada, Chad, Comoros, Congo, Dominican Republic, Egypt, Fiji, Gabon, Grenada, Guinea Bissau, Indonesia, Japan, Kiribati, Madagascar, Marshall Islands, Mali, Mauritania, Mauritius, Mexico, Micronesia, Morocco, Namibia, New Zealand, Niger, Papua New Guinea, Palau, St. Lucia, Solomon Islands, Somalia, Sudan, Switzerland, Timor-Leste, Togo, Tonga, Tunisia, United States, Zambia.).

222 UNEP (2010) Proposed Amendment to the Montreal Protocol, UNEP/OzL.Pro.22/5 (“Pursuant to paragraph 2 of Article 9 of the Vienna Convention for the Protection of the Ozone Layer, the Secretariat is circulating in the annex to the present note a joint proposal submitted by Canada, Mexico and the United States of America to amend the Montreal Protocol in respect of hydrofluorocarbon phase-down. The proposal is being circulated as received and has not been formally edited by the Secretariat.”).

223 UNEP (2010) Proposed Amendment to the Montreal Protocol, UNEP/OzL.Pro.22/6 (“The following is proposed text for an amendment to the Montreal Protocol to control HFCs.”).

226 Climate and Clean Air Coalition to Reduce Short Lived Climate Pollutants (2014) Executive Summary.

227 Press Release, The White House Office of the Press Secretary (2012) Fact Sheet: G-8 Action on Energy and Climate Change (“In the spirit of increasing mitigation efforts, we agree to collectively join the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants, launched on February 16, 2012. This new initiative will enhance our collective ambition in addressing climate change by complementing efforts to address CO₂ emissions. By developing strategies to reduce short term pollutants—chiefly methane, black carbon, and hydrofluorocarbons—we can help reduce global warming, improve health, and increase agricultural productivity, as well as energy security”); and Press Release, The White House Office of the Press Secretary (2012) Camp David Declaration.

228 United Nations (2012) Resolution adopted by the General Assembly: The Future We Want, A/RES/66/288 (“222. We recognize that the phase-out of ozone-depleting substances is resulting in a rapid increase in the use and release of high global-warming potential hydrofluorocarbons to the environment. We support a gradual phase-down in the consumption and production of hydrofluorocarbons.”).

229 UNEP Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol (2013) Report of the Sixty-Ninth Meeting of the Executive Committee, Ozl.Pro/ExCom/69/40, 30; and Press Release, Multilateral Fund for the Implementation of the Montreal Protocol, Multilateral Fund approves landmark project for China with ozone and climate benefits – up to $385 million of funding over the next 17 years (22 April 2013) (“In a landmark decision the Multilateral Fund’s Executive Committee has agreed to provide China, the largest producer and consumer of HCFCs, an amount up to US $385 million for the entire elimination of its industrial production of ozone depleting substances (ODS) by the year 2030”).

231 European Council (2013) Submission by Ireland and the European Commission of the European Union and its Member States (“The 2011 Bali Declaration under the Montreal Protocol lists 112 signatories committed to explore further and pursue effective means of transitioning to environmentally friendly alternatives to high GWP HFCs.”).
Montreal Protocol to phase down the production and the consumption of HFCs, based on the examination of economically viable supported complementary initiatives, through multilateral approaches that include using the expertise and the institutions of the Montreal Protocol from parties not so operating, underlined the need for the latter to take the lead in demonstrating the technical and economic availability of alternatives to HFCs ...

162. Several representatives, from parties operating under paragraph 1 circumstances, air conditioning was not a luxury but a necessity. Concerns over flammability and safety further limited the alternatives was a particular concern to them. In their countries, summer temperatures could reach as high as 55°C; in such circumstances, air conditioning was not a luxury but a necessity. Concerns over flammability and safety further limited the availability of alternatives to HFCs ...

155. Several representatives raised concerns over the level of financial support that would need to be available [for an HFC phasedown under the Montreal Protocol], especially given developing countries’ limited resources and competing priorities for public funding. Several representatives raised their concern over the availability of funding for both HCFC phase-out and potential HFC phase-down and one representative highlighted the inadequate amounts that his country had thus far received for assisting with HCFC phase-out ...

See also UNEP (2013) REPORT OF THE THIRTY-THIRD MEETING OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER, 21-22. (“155. Several representatives raised concerns over the level of financial support that would need to be available [for an HFC phasedown under the Montreal Protocol], especially given developing countries’ limited resources and competing priorities for public funding. Several representatives raised their concern over the availability of funding for both HCFC phase-out and potential HFC phase-down and one representative highlighted the inadequate amounts that his country had thus far received for assisting with HCFC phase-out […] 160. Several representatives from high-ambient-temperature regions explained that the matter of the availability of [HFC] alternatives was a particular concern to them. In their countries, summer temperatures could reach as high as 55°C; in such circumstances, air conditioning was not a luxury but a necessity. Concerns over flammability and safety further limited the availability of alternatives to HFCs […] 162. Several representatives, from parties operating under paragraph 1 of Article 5 and from parties not so operating, underlined the need for the latter to take the lead in demonstrating the technical and economic feasibility of new alternatives.”).
accounting and reporting of emissions…. Recognizing that climate change is a defining challenge of our time and that there are mutual benefits to intensifying cooperation,” the two leaders also announced an India-U.S. Climate Change Working Group “to develop and advance action-oriented cooperation, as well as to begin an enhanced dialogue focusing on working closely in developing an ambitious climate change agreement for the post-2020 period…”.

244 Press Release, White House Office of the Press Secretary, Fact Sheet: The United States and India – Strategic and Global Partners (27 September 2013).

245 Press Release, Environmental News Network, Steady March Towards Action on Reducing HFCs Under Montreal Protocol (25 October 2013). In the decision requesting action by the TEAP, the Parties agreed to: (1) estimate current and future demand for alternatives, including HFCs, and also requested an assessment of the economic costs and implications, and environmental benefits of various scenarios that avoid high-GWP alternatives to currently used ODS, including, HFCs; (2) convene a workshop back-to-back with the 34th OEWG in summer 2014 to continue discussions on HFC management; (3) provide to the Ozone Secretariat, on a voluntary basis, information regarding the avoidance of HFCs under the existing HCFC phase-out; and (4) request the Executive Committee of the Multilateral Fund to consider whether additional demonstration projects to validate low-GWP alternatives and technologies, and additional activities to maximize the climate benefits in the HCFC production sector, would be useful in assisting developing country Parties in further minimizing the environmental impacts of the HCFC phase-out.

250 U.S. Department of State Official Blog (2014) We Need To Elevate the Environment in Everything We Do (“This challenge demands elevated urgency and attention from all of us… Here’s what this guidance means in practice: I. Lead by example through strong action at home and abroad … at the federal, regional, and local level. II. Conclude a new international climate change agreement … applicable to all countries by 2015 to take effect in 2020. III. Implement The Global Climate Change Initiative…. IV. Enhance multilateral engagement … including the Major Economies Forum, Clean Energy Ministerial, Montreal Protocol, and the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants. V. Expand bilateral engagement … on clean energy…. VI. Mobilize financial resources … and leverage billions of dollars of funding to transform our energy economies and promote sustainable land use, as well as working to limit public incentives for high-carbon energy production and fossil fuels. VII. Integrate climate change with other priorities..., including women’s empowerment, urbanization, conflict and national security, and our own management and operations.”). See also U.S. Department of State, Fact Sheet: Addressing Climate Change: A Top U.S. Priority (5 March 2014).

252 Press Release, European Commission, Joint Statement: Deepening the E.U.-China Comprehensive Strategic Partnership for mutual benefit (31 March 2014), para. 18; see also para. 10 (where the E.U. and China “reaffirmed their commitment to implement their G20 commitments.”).

253 Press Release, The White House Office of the Press Secretary, The Brussels G-7 Summit Declaration (5 June 2014) (The G-7 includes Canada, France, Germany, Italy, Japan, the U.K. the U.S., the President of the European Council, and the President of the European Commission.).

254 Press Release, U.S. Department of State, Joint U.S.-China Press Statements at the Conclusion of the Strategic & Economic Dialogue (10 July 2014) (“We are working together to phase down the production and the consumption of hydrofluorocarbons, which is a potent greenhouse gas.”).

255 UNEP (2014) Report of the Thirty-Fourth Meeting of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (“[T]he Working Group agreed that interested parties would hold an informal discussion, facilitated by Ms. Gudi Alkemade (Netherlands) and Mr. Obed Meringo Baloyo (South Africa), on the management of HFCs, including the legal and technical issues raised at previous meetings and during the HFC management workshop, and develop options for addressing the issues raised, including the relationship between the Montreal Protocol and the Framework Convention on Climate Change and its Kyoto Protocol.”); see also International Institute for Sustainable Development (2014) Workshop on Hydrofluorocarbon (HFC) Management and Thirty-fourth meeting of the Open-ended Working Group (OEWG 34) of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer.

256 UNEP (2014) Workshop on Hydrofluorocarbon Management: Conclusions and Identification of Further Discussion Points, Summary by the Rapporteurs; see also International Institute for Sustainable Development (2014)
The Open contact group to consider proposals to amend the Montreal Protocol, including those that have been submitted for consideration (20 April 2015) (“Requests the Open-ended Working Group at its thirty-sixth meeting in July 2015: 1. To agree to establish a contact group to consider proposals to amend the Montreal Protocol, including those that have been submitted for consideration by the Meeting of the Parties.”).

Climate and Clean Air Coalition (2014) The Climate and Clean Air Coalition (CCAC): Accelerating Action on Short-Lived Climate Pollutants (SLCPs) Abu Dhabi Ascent 4-5 May 2014.

Climate and Clean Air Coalition (2014) The Climate and Clean Air Coalition (CCAC): Accelerating Action on Short-Lived Climate Pollutants (SLCPs) Abu Dhabi Ascent 4-5 May 2014.

Press Statement, The White House, U.S.-India Joint Statement (30 September 2014). (“They pledged to urgently arrange a meeting of their bilateral task force on HFCs prior to the next meeting of the Montreal Protocol to discuss issues such as safety, cost, and commercial access to new or alternative technologies to replace HFCs. The two sides would thereafter cooperate on next steps to tackle the challenge posed by HFCs to global warming.”) see also U.S. Department of State, U.S.-India Energy and Climate Change Cooperation (30 September 2014).

UNEP (2014) Decision XXVI/10: 2015-2017 Replenishment of the Multilateral Fund. (“1. To adopt a budget for the Multilateral Fund for the Implementation of the Montreal Protocol for 2015–2017 of $507,500,000 on the understanding that $64,000,000 of that budget will be provided from anticipated contributions due to the Multilateral Fund and other sources for the 2012-2014 triennium, and that $6,000,000 will be provided from interest accruing to the Fund during the 2015–2017 triennium. The parties note that outstanding contributions from some parties with economies in transition in the period 2012–2014 stands at $8,237,606.”).

Press Release, The White House, U.S.-India Joint Statement (25 January 2015) (“The President and Prime Minister reaffirmed their prior understanding from September 2014 concerning the phase down of HFCs and agreed to cooperate on making concrete progress in the Montreal Protocol this year.”). See also The White House, Fact Sheet: U.S. and India Climate and Clean Energy Cooperation (25 January 2015) (“The United States and India agreed on…Cooperating on Hydrofluorocarbons (HFCs): Building on their prior understandings from September 2014 concerning the phasedown of HFCs, the leaders agreed to cooperate on making concrete progress in the Montreal Protocol this year.”).

Cairo Declaration on Managing Africa’s Natural Capital for Sustainable Development and Poverty Eradication (6 March 2015) (“43. To urge member States to use the experience, expertise and institutions of the Montreal Protocol on Substances that Deplete the Ozone Layer to phase down the production and consumption of HFCs while continuing to use other existing mechanisms for accounting and reporting of emissions of these substances; 44. To request the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer to work towards establishing an open-ended contact group during its meetings in 2015 onwards to consider, among other things, financial and technological support to Africa to manage HFCs that might result in phasing down the production and consumption of HFCs, taking into account the cost-effectiveness and safety of substitutes and environmental benefits.”).
to an agreement to continue intersessional discussions, in an informal manner, to study the feasibility and ways of managing HFCs, with a view to the establishment of a contact group on feasibility and ways of managing HFCs at OEWG 36. The intersessional discussions are to examine a list of related challenges, including inter alia: energy efficiency; funding requirements; safety of substitutes; availability of technologies; performance and challenges in high-ambient temperatures; capacity building; non-party trade; synergies with the UNFCCC; the relationship to the HFCs phase-out; ecological effects; implications for human health; social implications; challenges to the production sector; exemptions and ways to address lack of alternatives; and technology transfer.”).

271 All the information on the Workshop on Hydrofluorocarbon Management including pre-session documents and presentations can be found on the website of Montreal Protocol Secretariat.

275 Ozone Secretariat, Proposal of the Co-Convenors (13 June 2015).

279 Ministry of Foreign Affairs Government of Pakistan, 2015 Joint Statement By President Barak Obama And Prime Minister Nawaz Sharif (22 October 2015); see also The White House Office of the Press Secretary, 2015 Joint Statement By President Barak Obama And Prime Minister Nawaz Sharif (22 October 2015) (“Further, to advance global efforts to address a leading cause of climate change, President Obama and Prime Minister Sharif affirmed that their respective countries intend to work together to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons.”).

280 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To recognize the progress made at the Twenty-Seventh Meeting of the Parties on the challenges identified in the mandate of the contact group agreed at the resumed thirty-sixth meeting of the Open-ended Working Group (listed in annex I to the present decision,) on the feasibility and ways of managing HFCs, including development of a common understanding on issues related to flexibility of implementation, second and third stage conversions, guidance to the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, enabling activities for capacity-building and the need for an exemption for high-ambient-temperature countries, and to endorse the concepts listed in annex II to the present decision.”). See also IIISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1–5 November 2015 Earth Negotiations Bulletin 19(115) (“MOP 27 immediately followed the two-day resumed session of the 36th Open-ended Working Group (OEWG 36), which had agreed on a mandate for a contact group on the feasibility and ways of managing hydrofluorocarbons (HFCs). The contact group was established and HFCs were the “major topic” under debate throughout the week.”).

281 UNEP (2015) Decision XXVII/1: Dubai Pathway on Hydrofluorocarbons (HFCs) (“To work within the Montreal Protocol to an HFC amendment in 2016 by first resolving challenges by generating solutions in the contact group on the feasibility and ways of managing HFCs during Montreal Protocol meetings.”). See also UNEP News Centre (2015) Montreal Protocol Parties Devise Way Forward to Protect Climate Ahead of Paris COP21 (“The parties agreed to work together, within the Montreal Protocol, towards an HFC amendment in 2016 by first resolving challenges and generating solutions in the contact group on the feasibility and ways of managing HFCs at Montreal Protocol meetings. This outcome was agreed after extensive negotiations during the 27th Meeting of the Parties (MOP27) to the Protocol, hosted by the Government of the United Arab Emirates in Dubai from 1 to 5 November.”).

282 UNEP (2016) Report of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.27/13, 25; see also IIISD Reporting Services (2015) Summary of the Twenty-Seventh Meeting of the Parties to the Montreal Protocol: 1–5 November 2015 Earth Negotiations Bulletin 19(115) (“Following protracted negotiations that finally concluded in the early hours of Friday morning, parties agreed to a “roadmap” for negotiating an HFC amendment; this agreement included provision for an additional OEWG meeting and an extraordinary MOP in 2016.”).

283 Media Note, U.S. Department of State, U.S.-Pakistan Strategic Dialogue Joint Statement (1 March 2016) (“The two delegations expressed appreciation for the fact that, by partnering on cleaner energy technologies, the United States and Pakistan are also partnering to curb greenhouse gas emissions. Both countries recognized the importance of following up on the Paris climate commitment, including their Intended Nationally Determined Contributions (INDCs). Further, the two sides reaffirmed their respective countries’ commitments to work together to amend the Montreal Protocol this year to curb the production and consumption of hydrofluorocarbons, acknowledging that the impact on Pakistan’s economy and industry would be taken into account. They welcomed the next meeting of the Energy Working Group in March 2016, which will highlight new areas for U.S. clean energy investment in Pakistan and provide strategic direction to the two countries’ energy partnership for the coming years.”).
HFC amendment proposals for review at OEWG 38. Lauding progress, OEWG 37 Co Chair Smith suspended the contact group, recommending to resume OEWG 37 prior to OEWG 38, pending budgetary implications. Delegates agreed. The EU, with Kuwait, requested the Secretariat to inform parties of the dates of the resumed session. Noting informal discussion on the need for broader exemptions, Canada presented text, stating: “to address the possibilities or need for exemptions from the HFC phase-down schedule not later than 2030.” Commending the text, Saudi Arabia, with Pakistan, urged for discussion by a contact group, before seeking approval from plenary, as is common practice. The plenary took note of Canada’s remarks. The US suggested parties request the Secretariat to provide an information document comparing the different HFC amendment proposals for review at OEWG 38. Lauding progress, OEWG 37 Co-Chair Smith suspended the meeting at 12:40 am on Saturday, 9 April.”

White House Office of the Press Secretary, U.S.-Canada Joint Statement on Climate, Energy, and Arctic Leadership (10 Mar 2016) (“Both Canada and the U.S. affirm their commitment to reduce use and emissions of hydrofluorocarbons (HFCs) using their respective domestic frameworks and will propose new actions in 2016. Canada and the U.S. are both demonstrating leadership by updating their public procurement processes to transition away from high global warming potential HFCs, whenever feasible, through government purchase of more sustainable and greener equipment and products….The U.S. and Canada affirm their commitment to adopt a Montreal Protocol HFC phasedown amendment in 2016, and upon adoption to provide increased financial support to the Protocol’s Multilateral Fund to help developing countries implement a phase-down. The U.S. and Canada will continue to support a range of activities that promote alternatives to high global warming potential HFCs and promote greener technologies, including in those countries facing challenges such as high ambient temperatures.”).

White House Office of the Press Secretary, FACT SHEET: United States – Argentina Relationship (23 Mar 2016) (“The United States and Argentina affirm their commitment to adopt an amendment to the Montreal Protocol on hydrofluorocarbons (HFCs) phase down in 2016, building on progress made and within the framework set out in the Dubai Pathway. Both countries also welcome the common understandings reached in Dubai on financial support to the Multilateral Fund for developing countries to implement an HFC phase-down amendment. We will work together to generate solutions on priority challenges to managing HFCs.”).

White House Office of the Press Secretary, U.S.-China Joint Presidential Statement on Climate Change (31 Mar 2016) (“The Presidents recognize that the Paris Agreement marks a global commitment to tackling climate change and a strong signal of the need for a swift transition to low-carbon, climate-resilient economies. In this regard, the Presidents are also committed to working bilaterally and with other countries to achieve successful outcomes this year in related multilateral fora, including on an HFC amendment under the Montreal Protocol pursuant to the Dubai Pathway.”).

UNEP (2016) REPORT OF THE THIRTY-SEVENTH MEETING OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER, UNEP/OzL.Pro.WG.1/37/7, 13–14.; see also IISD Reporting Services (2016) Summary of the Thirty-Seven Meeting of the Open-Ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: 4–8 April 2016,Earth Negotiations Bulletin 19(116) (“On Wednesday evening, following discussions, parties presented compromise text. A proponent said that while the issue is broad, the proposal only addresses an exemption for parties with HAT conditions, where suitable alternates do not exist. The proposal… specifies that the exemption will be available at the commencement of the HFC freeze or other initial control obligations with a duration of four years; applies to Article 5 countries with an average of at least two months per year, over 10 consecutive years, with a peak monthly average temperature above 35 degrees Celsius, and formally notified use of this exemption to the Secretariat no later than one year before the HFC freeze or other initial control obligation, and every four years thereafter, should it wish to extend the exemption; calls for any party operating under the HAT exemption to report separately the production and consumption data for the sub-sectors to which a HAT exemption applies…. Many lauded this compliance deferral approach as a way to move forward on HFC management, with one expressing “renewed hope” in the spirit of consensus. The proponents clarified that 34 countries would qualify for the HAT exemption. The proponents also said that while the exemption was currently placed within the North American amendment proposal, it is a standalone item and not “locked into” any specific amendment proposal.”).
In particular, we resolve to drive down our methane emissions and further recognize the importance of adopting short-term measures to address methane emissions. Methane is a potent greenhouse gas with a climate warming potential 25 times that of carbon dioxide over a 100-year time horizon. The rapid increase in atmospheric methane levels poses an urgent threat to the global climate, with a risk of the global temperature exceeding 1.5°C above pre-industrial levels by the end of this century.

The United States and Nordic countries plan to continue to support a range of activities that promote alternatives to hydrofluorocarbons (HFCs) with high global warming potential and to promote greener technologies in all sectors. This includes supporting the Montreal Protocol on Substances That Deplete the Ozone Layer and its amendment adopted in 1987, which has nearly halved global emissions of ozone-depleting substances (ODS) since 1980. The Montreal Protocol has been successful in phasing out eight major classes of ozone-depleting substances, with a global phase-out of hydrofluorocarbons (HFCs) by 2040.

The United States and Nordic countries intend to support enhanced climate action by working together to achieve ambitious outcomes within international fora such as the Montreal Protocol and International Civil Aviation Organization (ICAO). In particular, the United States and Nordic countries will continue to support a range of activities that promote alternatives to hydrofluorocarbons (HFCs) with high global warming potential and to promote greener technologies in all sectors. This includes supporting the Montreal Protocol on Substances That Deplete the Ozone Layer and its amendment adopted in 1987, which has nearly halved global emissions of ozone-depleting substances (ODS) since 1980. The Montreal Protocol has been successful in phasing out eight major classes of ozone-depleting substances, with a global phase-out of hydrofluorocarbons (HFCs) by 2040.
domestic measures. We welcome the decision in Dubai by the Montreal Protocol parties to work to address HFCs under the Montreal Protocol, and we support adoption of an ambitious Montreal Protocol HFC phase-down amendment in 2016, and intend to provide additional support through the Multilateral Fund following adoption of an amendment for its implementation.

298 Clean Energy Ministerial, World’s Energy and Business Leaders Announce Actions to Accelerate Global Deployment of Technologies at Seventh Clean Energy Ministerial (2 June 2016) (“Developing Climate Smart Cooling Technologies: The new Advanced Cooling (AC) Campaign challenges governments and industry to develop and deploy at scale super-efficient, smart, climate friendly and affordable cooling technologies critical for prosperous and healthy societies furthering the goals of the Montreal Protocol. Access to cooling can improve health, productivity, economic growth, and educational outcomes. For example, improving the average efficiency of air conditioners sold in 2030 by 30 percent could reduce emissions by up to 25 billion tons of carbon dioxide (CO₂) over the lifetime of the equipment and reduce peak electricity demand by as much as 340–790 gigawatts.”).

299 Joint Statement: The United States and India: Enduring Global Partners in the 21st Century, U.S.-India (7 June 2016) (“The United States and India share common climate and clean energy interests and are close partners in the fight against climate change. …The leaders reiterated their commitment to pursue low greenhouse gas emission development strategies in the pre-2020 period and to develop long-term low greenhouse gas emission development strategies. In addition, the two countries resolved to work to adopt an HFC amendment in 2016 with increased financial support from donor countries to the Multilateral Fund to help developing countries with implementation, and an ambitious phasedown schedule, under the Montreal Protocol pursuant to the Dubai Pathway.”); see also White House Office of the Press Secretary, FACT SHEET: The United States and India – Moving Forward Together on Climate Change, Clean Energy, Energy Security, and the Environment (7 June 2016) (“In addition, the two sides plan to work together to adopt in 2016 an ambitious amendment to phase-down the production and consumption of hydrofluorocarbons – a potent greenhouse gas – under the Montreal Protocol, which could avoid a half-degree of temperature increase. By avoiding up to 0.5°C of warming by the end of the century, an HFC Amendment is one of the most consequential actions we can take to implement the goals of the Paris Agreement. Furthermore, the United States and India committed to work together to reach a successful resolution to address greenhouse gas emissions from international civil aviation at the upcoming International Civil Aviation Organization Assembly.”).

300 Leaders’ Statement on a North American Climate, Clean Energy, and Environment Partnership, U.S., Canada, & Mexico (29 June 2016) (“Canada, the U.S., and Mexico affirm our commitment to adopt an ambitious and comprehensive Montreal Protocol hydrofluorocarbons (HFCs) phase-down amendment in 2016, and to reduce use of HFCs, including through domestic actions. We call on all nations to support this goal.”).

301 G20 Energy Ministerial Meeting Beijing Communiqué, G20 (29 June 2016) (“We recognize that energy efficiency, including energy conservation, is a long-term priority for G20. Improving energy efficiency brings social, economic, environmental and other benefits, and plays a key role in shaping a sustainable future. …We adopt the G20 Energy Efficiency Leading Programme (EELP), and agree to take the lead in promoting energy efficiency. We agree to take action by adhering to the Voluntary Pillars for Energy Efficiency Cooperation, which are "mutually beneficial, innovative, inclusive, and sharing". We commit to significantly improve energy efficiency in the G20, through greater energy efficiency cooperation and by encouraging G20 members to develop active energy efficiency programs, policies and measures based on the specific needs and national circumstances of each member. …We encourage interested countries to strengthen this collaboration and to participate actively in the additional key areas outlined in the EELP, which are Best Available Technologies and Practices (‘TOP TENs’), Super-efficient Equipment and Appliances Deployment initiative (‘SEAD’), District Energy Systems (‘DES’), Energy Efficiency Knowledge Sharing Framework, and Energy End-Use-Data and Energy Efficiency Metrics. We welcome the active participation of non-G20 countries in all key areas of energy efficiency collaboration.”).

302 UNEP (2016) REPORT OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEplete THE Ozone Layer ON THE WORK ON ITS RESUMED THIRTY-SEVENTH MEETING, UNEP/OZL.Pro.WG.1/resumed.37/7, 4 (“At the final plenary session, on the morning of Sunday, 17 July 2016, the co-chair of the contact group reported that the group had reached agreement on solutions to the challenges set out in the Dubai Pathway, including agreement that some solutions to some of the challenges would be discussed during the negotiation of the HFC amendment proposals and would be concluded prior to the adoption of any such amendment. His report, detailing the solutions agreed by the contact group, is set out, without formal editing, in the annex to the present report.”); see also IISD Reporting Services (2016) Summary of the Montreal Protocol Meetings in Vienna: 15–23 July 2016, Earth Negotiations Bulletin 19(125) (“The resumed session of OEWG 37 continued its discussions on the feasibility and ways of managing hydrofluorocarbons (HFCs), as agreed to under the Dubai Pathway on HFCs. It concluded its work on generating solutions to the stated challenges contained in the Dubai Pathway on HFCs. A key outcome was agreement on possible funding solutions.”).

303 See Vienna solutions for challenges on funding issues and flexibility of implementation, in UNEP (2016) REPORT OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEplete THE Ozone Layer ON THE WORK ON ITS RESUMED THIRTY-SEVENTH MEETING, UNEP/OZL.Pro.WG.1/resumed.37/7, 7–8; see also Informal Group on Funding (2016) Vienna solutions for challenges on funding issues and flexibility of implementation, 37th OEWG of the Montreal Protocol (17 July 2016) (“To maintain the MLF as the financial mechanism and that sufficient additional financial resources will be provided by non-A5 parties to offset costs arising out of agreed HFC obligations for A5 parties. A5 parties will have flexibility to prioritize HFCs, define sectors, select technologies/alternatives, elaborate and implement their strategies to meet agreed HFC obligations, based on their specific needs and national circumstances, following a country driven approach. The ExCom shall incorporate the principle in the above mentioned paragraph in relevant guidelines and its decision making process. To request the
ExCom to develop, within one year after the adoption of the HFC amendment, guidelines for financing the phase-down of HFC consumption and production, including cost-effectiveness thresholds.

304 UNEP (2016) Report of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer on the Work of Its Resumed Thirty-seventh Meeting, UNEP/OzL.Pro.WG.1/resumed.37/7, 12 (“Non-party trade provisions for all countries enter into force five years after the freeze date for Article 5 parties.”); see also Informal discussions on Non-Party Trade Provisions (2016) Text on Non-party trade provisions, 37th OEWG of the Montreal Protocol (17 July 2016) (“Non-party trade provisions for all countries enter into force five years after the freeze date for Article 5 parties”)

305 UNEP (2016) REPORT OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER ON THE WORK OF ITS RESUMED THIRTY-SEVENTH MEETING, UNEP/OzL.Pro.WG.1/resumed.37/7, 5–6 (“With regard to challenge 5, exemptions, the contact group agreed that the solution with regard to the exemption for HAT countries was as agreed at the thirty-seventh meeting of the Open-ended Working Group, as reflected in annex IV of the report of the meeting. It was reiterated in that context that the definition of high ambient temperature and the corresponding list of high ambient temperature countries was to be reviewed by TEAP with an eye to whether additional countries could be added to the list, noting that those countries already identified as high ambient temperature countries would remain on the high ambient temperature exemption list. Interested parties could participate in the review.”); see also Informal Group on Exemptions non-related to HAT (2016) Proposed solutions on challenge 5: Exemptions, 37th OEWG of the Montreal Protocol (17 July 2016) (“To allow for exemptions, such as for essential uses and critical uses, in any HFC amendment. To consider mechanisms for such exemptions in 20XX including multi-year exemptions mechanisms. To provide information and guidance to the TEAP for its periodic review of sectors where exemptions may be required.”)

306 UNEP (2016) REPORT OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER ON THE WORK OF ITS RESUMED THIRTY-SEVENTH MEETING, UNEP/OzL.Pro.WG.1/resumed.37/7, 8 (“To request the ExCom to develop cost guidance associated with maintaining and/or enhancing energy efficiency of low-GWP or zero-GWP replacement technologies and equipment, when phasing down HFCs, while taking note of the role of other institutions addressing energy efficiency, when appropriate.”); see also Informal Group on Funding (2016) Vienna solutions for challenges on funding issues and flexibility of implementation, 37th OEWG of the Montreal Protocol (17 July 2016) (“To request the ExCom to develop cost guidance associated with maintaining and/or enhancing energy efficiency of low-GWP or zero-GWP replacement technologies and equipment, when phasing down HFCs, while taking note of the role of other institutions addressing energy efficiency, when appropriate.”)

307 UNEP (2016) REPORT OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER ON THE WORK OF ITS RESUMED THIRTY-SEVENTH MEETING, UNEP/OzL.Pro.WG.1/resumed.37/7, 5 (“With regard to challenge 3, the availability of alternatives including the issue of intellectual property rights, it was noted that the availability of alternatives was being addressed under other challenges and particularly in the context of exemptions. However, the contact group suggested specific language for the safety and flammability issues to address a barrier in international safety standards. That language can be found in the meeting portal under contact group. The contact group also agreed that the TEAP should conduct periodic reviews, the details of which can also be found on the contact group portal.”); see also Informal discussions on Alternatives (2016) Informal consultations, 37th OEWG of the Montreal Protocol (16 July 2016) (“Parties recognize the importance of timely updating international standards for flammable low-GWP refrigerants including IEC60335-2-40 and support promoting actions that allow safe market introduction, as well as manufacturing, operation, maintenance and handling of zero-GWP or low-GWP refrigerant alternatives to HCFCs and HFCs.”)

308 UNEP (2016) REPORT OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER ON THE WORK OF ITS RESUMED THIRTY-SEVENTH MEETING, UNEP/OzL.Pro.WG.1/resumed.37/7, 11 (“Parties acknowledge the linkage between the HFC and HCFC reduction schedule relevant to sectors and preference to avoid transitions from HCFC to high GWP HFC and are willing to provide flexibility if no other technically proven and economically viable alternatives are available. Parties also acknowledge these linkages with respect to certain sectors, in particular industrial process refrigeration, and the preference to avoid transitions from HCFCs to high-GWP HFCs, and are willing to provide flexibility if no other alternatives are available in cases where: (1) HCFC supply may be unavailable from existing allowable consumption, stocks as well as recovered/recycled material, and (2) if it would allow for a direct transition at a later date from HCFCs to low-GWP or zero GWP alternatives. Prior to the commencement of any Article 5 HFC freeze or other initial control obligations and in light of the acknowledgment above, flexibility measures will be provided in relation to the HCFC phaseout relevant to certain sectors, in particular the industrial process refrigeration subsector in order to avoid double conversions.”); see also Informal Group on HCFCs-HCFCs’ linkages (2016) HFC-HCFC linkages Final Text, 37th OEWG of the Montreal Protocol (16 July 2016) (“Parties acknowledge the linkage between the HFC and HCFC reduction schedule relevant to sectors and preference to avoid transitions from HCFC to high GWP HFC and are willing to provide flexibility if no other technically proven
and economically viable alternatives are available. Parties also acknowledge these linkages with respect to certain sectors, in particular industrial process refrigeration, and the preference to avoid transitions from HCFCs to high-GWP HFCs, and are willing to provide flexibility if no other alternatives are available in cases where: (1) HCFC supply may be unavailable from existing allowable consumption, stocks as well as recovered/recycled material, and (2) if it would allow for a direct transition at a later date from HCFCs to low-GWP or zero GWP alternatives. Prior to the commencement of any Article 5 HFC freeze or other initial control obligations and in light of the acknowledged above, flexibility measures will be provided in relation to the HCFC phaseout relevant to certain sectors, in particular the industrial process refrigeration subsector in order to avoid double conversions.

310 UNEP (2016) Report of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer on the Work of its Resumed Thirty-seventh Meeting, UNEP/OzL.Pro.WG.1/resumed.37/7, 4 (“The Open-ended Working Group then adopted the solutions agreed to by the contact group as described in the co-chair’s report, and the Co-Chair of the Working Group concluded that, having achieved an agreed set of solutions, the Working Group could move on to discuss the proposals to amend the Montreal Protocol in respect of HFCs at its thirty-eighth meeting. The Co-Chair also noted that the contact group co-chair’s report would be set out in the annex to the present report and that the solutions as agreed by the Working Group would be presented in a document for its thirty-eighth meeting.”); see also IISD Reporting Services (2016) OEWG 37 Highlights: Saturday, 16 July 2016, Earth Negotiations Bulletin 19(119) (“Contact Group Co-Chair McNerney reported a “concrete and positive outcome” and reviewed the solutions developed for each category of challenges identified in the Dubai Pathway, noting that solutions for some challenges would require further discussion during the course of the amendment negotiations…. OEWG 37 Co-Chair Smith said the set of agreed solutions will be reported to OEWG 38, permitting advancement to the next stage of the Dubai Pathway, negotiations of an HFC amendment.”).

311 UNEP (2016) Report of the Thirty-eighth Meeting of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.WG.1/38/8, 1 (“Ms. Tina Birmili, Executive Secretary of the Ozone Secretariat, made an opening statement in which she expressed appreciation to all parties for the flexibility, leadership and spirit of compromise that they had exhibited during the resumed thirty-seventh meeting of the Open-ended Working Group, at which they had achieved a positive outcome with solutions to challenges identified under the Dubai pathway on hydrofluorocarbons (HFCs). She invited representatives to continue working in the same spirit at the current meeting as they considered the four amendment proposals on HFCs in preparation for the Third Extraordinary Meeting of the Parties.”); see also UNEP (2016) Report of the Third Extraordinary Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: High-level Meeting, UNEP/OzL.Pro.ExMOP.3/7, 11–12 (“[T]he contact group had met during the resumed thirty-seventh meeting of the Open-ended Working Group and produced a positive outcome with solutions to specific challenges identified in the Dubai pathway on HFCs. The group had reconvened during the thirty-eighth meeting of the Open-ended Working Group to continue its work and had discussed, under agenda item 4, the most challenging elements of the amendment proposals, namely, the baselines, freeze dates and reduction schedules for both Article 5 and non-Article 5 parties. The thirty-eighth meeting of the Open-ended Working Group had been suspended, and the Working Group had decided that informal discussions on those issues, along with any outstanding issues related to the challenges outlined in the Dubai pathway, would continue under the auspices of the contact group during the current meeting. The contact group would hear a report on the result of the informal discussions and would also consider four proposals that had been submitted to the Working Group in conference room papers and would report on its progress to the Third Extraordinary Meeting of the Parties.”).

312 UNEP (2016) Report of the Thirty-eighth Meeting of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.WG.1/38/8, 6 (“The Open-ended Working Group accordingly decided to suspend its thirty-eighth meeting to allow the contact group, including through informal consultations, to continue to discuss the issues outlined above in the margins of the Third Extraordinary Meeting of the Parties and to report on the outcome of its discussions to the Third Extraordinary Meeting of the Parties in plenary. The contact group would also further consider the three conference room papers referred to above, along with a fourth conference room paper, submitted by Pakistan, proposing draft decision text for draft decisions of the Meeting of the Parties under the Dubai pathway. The content of those conference room papers is reproduced in annexes II–V to the present report. It was agreed that every effort would be made to avoid holding meetings of the contact group concurrently with the meeting of any other contact group during the Third Extraordinary Meeting of the Parties.”).

313 UNEP (2016) Report of the Third Extraordinary Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer: High-level Meeting, UNEP/OzL.Pro.ExMOP.3/7, 12 (“Decided that the thirty-eighth meeting of the Open-ended Working Group would remain suspended and resume immediately prior to the Twenty-Eighth Meeting of the Parties, subject to the making of additional contributions to the trust fund for the Montreal Protocol.”); see also IISD Reporting Services (2016) Summary of the Montreal Protocol Meetings in Vienna: 15–23 July 2016, Earth Negotiations Bulletin 19(125) (“OEWG 38 considered, inter alia: the report by the Technology and Economic Assessment Panel (TEAP) on updated and new information on alternatives to ozone-depleting substances (ODS); the TEAP 2016 report; issues related to exemptions under Article 2 of the Protocol; and the terms of reference for the study on the 2018–2020 replenishment of the Multilateral Fund (MLF) for the Implementation of the Montreal Protocol. Parties also continued work in the HFC Management Contact Group, by starting consideration of the four amendment proposals. As parties were unable to conclude their work, OEWG 38 was suspended and, subject to the availability of funds, may reconvene prior to MOP 28.”).

314 CCAC (2016) Vienna Communiqué, HLA/JUL.2016.02A (“Re-iterate that CCAC State Partners strongly support the adoption of an ambitious Montreal Protocol amendment in 2016 that includes an early freeze and rapid action to phase down HFCs”).
mitigation and adaptation act
timely implementatio
322
and remain active participants in the Clean Energy Ministerial's Advanced Cooling Challenge.”).
work together on critical research regarding the safe use of flammable alternatives and commit to collaborate on enhanced
support from Article 2 Parties t
date for Article 2 and Article 5 Parties respectively and an ambitious phase
ambitious and comprehensive HFC
related multilateral fora. The United States and China commit to work together and with others to promote the full implementation of the Paris Agreement. The two Presidents call on all other Parties to the United
Agreement’s entry into force this year. The Presidents fur
Nations Framework Convention on Climate Change to join the Paris Agreement as early as possible with the expectation of the
contribution towards the early entry into force of the Pa
321
affirmed their commitment to work to adopt an ambitious and comprehensive hydrofluorocarbons phase-down amendment in 2016 within the Montreal Protocol pursuant to the Dubai Pathway.”).
financial support from donor countries to the Multilateral Fund to help developing countries with implementatio
parties resolved to continue to work together to adopt a hydrofluorocarbon (HFC) amendment in 2016 with increased
up to 25 billion tonnes of CO2 over the lifetime of the equipment.”).
measures to improve energy efficiency of HFC-containing equipment, noting that improving the average efficiency of air
conditioners sold in 2030 by 30%, in parallel with low Global Warming Potential (GWP) refrigerants, could reduce emissions by
316
Joint Statement by the United States of America and the Republic of Singapore, U.S.-Singapore (2 Aug 2016) (“In addition, the two
countries resolved to continue to work together to adopt a hydrofluorocarbon (HFC) amendment in 2016 with increased financial support from donor countries to the Multilateral Fund to help developing countries with implementation, and an ambitious phasedown schedule, under the Montreal Protocol pursuant to the Dubai Pathway.”).
Climate Finance. We welcome the G20 Climate Finance Study Group report on "Promoting Efficient and Transparent Provision and Mobilization of Climate Finance to Enhance Ambition of Mitigation and Adaptation Actions". We look forward to successful outcomes in related multilateral fora, including the Montreal Protocol and the International Civil Aviation Organization.

32 Forum Communiqué, Forty-Seventh Pacific Islands Forum (8–10 Sept 2016) (“Leaders welcomed last year’s Dubai Pathway on Hydrofluorocarbons (HFC), in which Parties to the Montreal Protocol agreed to work to an amendment this year to phase down HFCs under the treaty. They highlighted the progress made by Parties at the recent Montreal Protocol meetings in Vienna, and they reiterated their support for an amendment to be agreed at the Meeting of the Parties in Kigali this October. The Leaders highlighted that such an amendment could prevent warming of up to 0.5°C by 2100 and is therefore critical for achieving the long-term temperature goals of the Paris Agreement. Leaders stressed that the amendment should include an early freeze date for HFC production and an early freeze date for HFC production and consumption followed by a rapid phase down of HFCs. They also emphasised the need to maximise the climate benefits of an HFC phase down by providing incentives to secure the major energy efficiency gains in applications that can be achieved concomitant with the global phase down of HFCs.”).

324 The New York Declaration of the Coalition to Secure an Ambitious HFC Amendment (22 Sept 2016) (“Recognizing that no challenge poses a greater threat to future generations than climate change, we strongly support the adoption of an ambitious hydrofluorocarbon (HFC) phasedown amendment at the upcoming October 2016 Meeting of the Parties to the Montreal Protocol in Rwanda that includes an early first reduction step for non-Article 5 parties, an early freeze date for Article 5 parties, and an ambitious phasedown schedule for all parties.”).

325 The New York Donor Declaration on an HFC Amendment to the Montreal Protocol (22 Sept 2016) (“We announce today our intent to provide an additional $27 million USD in 2017 to the Multilateral Fund if an ambitious HFC amendment is adopted at the October 2016 Meeting of the Parties with a sufficiently early freeze date for Article 5 parties to warrant fast-start support for implementation.”).

326 Press Release, The White House Office of the Press Secretary, Leaders from 100+ Countries Call for Ambitious Amendment to the Montreal Protocol to Phase Down HFCs and Donors Announce Intent to Provide $80 Million of Support (22 Sept 2016) (“Complementing the funding announced by donor countries today, the following group of 19 philanthropists announced their intent to provide $53 million to Article 5 countries to support improvements in energy efficiency: Barr Foundation; Bill Gates; Children’s Investment Fund Foundation; ClimateWorks Foundation; David and Lucile Packard Foundation; Heising-Simons Foundation; Hewlett Foundation; John D. and Catherine T. MacArthur Foundation; Josh and Anita Bekenstein; John and Ann Doerr; Laura and John Arnold; Oak Foundation; Open Philanthropy Project; Pirojsha Godrej Foundation; Pisces Foundation; Sandler Foundation; Sea Change Foundation; Tom Steyer; and Wyss Foundation. This support reflects a strong recognition from private philanthropists of the dual benefits associated with taking advantage of the transition to HFC alternatives to also improve energy efficiency.”).

327 UNEP (2016) Report of the Resumed Thirty-Eighth Meeting of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer, UNEP/OzL.Pro.WG.1/resumed.38/3 (“The Working Group decided that, at previous meetings at which it discussed proposals to amend the Montreal Protocol in respect of HFCs, it would conduct the bulk of its discussions during the current meeting in the contact group on the feasibility and ways of managing HFCs, co-chaired by Mr. Patrick McInerney (Australia) and Mr. Xia Yingxian (China), which had been established at the Twenty-Seventh Meeting of the Parties and continued at the thirty-seventh and thirty-eighth meetings of the Open-ended Working Group. Informal discussions would also take place as needed. It was agreed that in accordance with decision XXVII/1 the focus of the discussions would be the feasibility and ways of managing HFCs and that the discussions would be taken up where they had been suspended at the thirty-eighth meeting of the Open-ended Working Group. It was also agreed that interpretation in the six official languages of the United Nations would be provided for two 3-hour sessions (including both plenary and contact group sessions) and that any additional discussion would be conducted in English only.”); see also IISD Reporting Services (2016) Resumed OEWG 38 Highlights: 8 October 2016, Earth Negotiations Bulletin 19(126), 1 (“The resumed session of the thirty-eighth Open-ended Working Group (OEWG 38) of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer met in Kigali, Rwanda on Saturday, 8 October 2016. Parties convened to continue and conclude the work that has been assigned to the Contact Group on the Feasibility and Ways of Managing Hydrofluorocarbons (HFC Management Contact Group), as agreed to under the Dubai pathway on HFCs (the Dubai pathway). Having previously concluded work on generating solutions to agreed challenges, the contact group resumed discussions on issues related to proposed amendments, including calculation of baselines, and commencement years for any freezes and reduction steps.”).

328 UNEP (2016) Report of the Resumed Thirty-Eighth Meeting of the Open-ended Working Group of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer, UNEP/OzL.Pro.WG.1/resumed.38/3 (“At the final plenary session of the meeting, on the evening of 8 October, the co-chair of the contact group reported that the contact group had made good progress on a range of issues but had not reached final agreement on any aspect of the proposals to amend the Montreal Protocol in respect of HFCs. He also reported that the members of the contact group had reached agreement on the formation of a legal drafting group to develop text on matters on which tentative agreement had been reached in the contact group. It was agreed in that context that the contact group would continue to be the forum in which the negotiations on the amendment proposals took place; that no such negotiations would take place in the legal drafting group; that the role of the legal drafting group would be solely to give written expression to agreements reached by the contact group; and that the work product of the legal drafting group would be subject to approval and revision by the contact group. It was also reiterated in the context of the establishment of the legal drafting group that no element of a possible amendment to the Protocol was to be considered agreed until everything was agreed.”); see also IISD Reporting Services (2016) Resumed OEWG 38 Highlights: 8 October 2016.
Earth Negotiations Bulletin 19(126), 1–2 (“The EU, supported by the AUSTRALIA, BRAZIL, BURKINA FASO, CAMEROON, CANADA, EGYPT, the RUSSIAN FEDERATION, the US, RWANDA, SENEGAL, and Saudi Arabia for the GULF COOPERATION COUNCIL (GCC), and opposed by PAKISTAN, proposed establishing a legal drafting group. Many requested this group be established as early as possible to ensure amendment text is ready for review by Friday, 14 October. AUSTRALIA noted the legal drafting group is a way to progress in negotiations, stating that the proposed group’s relationship with the Contact Group would be iterative, so that legal language accurately reflects the decision of the Contact Group. … Contact Group Co-Chair McInerney noted “significant progress, putting us on a good footing” for discussions during MOP 28. He cited the decision to create a legal drafting group as a concrete achievement.”).

329 UNEP (2016) REPORT OF THE TWENTY-EIGHTH MEETING OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEplete THE Ozone LAYER, UNEP/OzL.Pro.28/12 (“Following a reading through of the proposed amendment text, and a discussion of the outstanding issues, the Meeting of the Parties adopted the text of the amendment as decision XXVIII/1 and the accompanying decision as decision XXVIII/2, as orally amended during the discussions.”); and UNEP (2016) Annex I, in REPORT OF THE TWENTY-EIGHTH MEETING OF THE PARTIES TO THE MONTREAL PROTOCOL ON Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.28/12; see also ISD Reporting Services (2016) Summary of the Twenty-eighth Meeting of the Parties to the Montreal Protocol: 10–14 October 2016, Earth Negotiations Bulletin 19(131), 1 (“MOP 28’s primary decision was to adopt the Kigali Amendment, which amended the Protocol to include hydrofluorocarbons (HFCs) as part of its ambit. MOP 28 also adopted a number of substantive and procedural decisions. Substantive decisions included: essential-use exemptions (EUEs) and critical-use exemptions (CUEs); and the Terms of Reference (TOR) for the study on the 2018-2020 replenishment of the Multilateral Fund (MLF). Procedural decisions adopted include: budget; organizational issues related to the Technology and Economic Assessment Panel; and membership of Montreal Protocol bodies.”).

330 CCAC (2017) Bonn Communiqué, HLA/NOV2017/02A (“We commend the countries that included short-lived climate pollutants in their national climate action plans, and the twelve countries that have ratified the Kigali Amendment to phase-down HFCs, and we encourage all countries and partners to continue efforts to reduce these pollutants and welcome complementary efforts to support increased energy efficiency in cooling appliances.”).

331 Press Release, UNEP (2017) Montreal Protocol celebrates another milestone as agreement to reduce climate-warming gases is set to enter into force in 2019

332 UNEP (2017) REPORT OF THE COMBINED ELEVENTH MEETING OF the CONFERENCE OF the PARITIES to the VIENNA Convention for the Protection of the Ozone Layer and the Twenty-Ninth Meeting of the PARTIES to the MONTREAL Protocol on Substances that Deplete the Ozone Layer, UNEP/OzL.Pro.29/8.

333 UNEP (2016) REPORT OF the TWENTY-EIGHTH MEETING OF the PARTIES to the MONTREAL Protocol on Substances that Deplete the Ozone LAYER, UNEP/OzL.Pro.28/12 (“Following a reading through of the proposed amendment text, and a discussion of the outstanding issues, the Meeting of the Parties adopted the text of the amendment as decision XXVIII/1 and the accompanying decision as decision XXVIII/2, as orally amended during the discussions.”); and UNEP (2016) Annex I, in REPORT OF the TWENTY-EIGHTH MEETING OF the PARTIES to the MONTREAL Protocol on Substances that Deplate the Ozone Layer, UNEP/OzL.Pro.28/12; see also ISD Reporting Services (2016) Summary of the Twenty-eighth Meeting of the Parties to the Montreal Protocol: 10–14 October 2016, Earth Negotiations Bulletin 19(131), 1 (“MOP 28’s primary decision was to adopt the Kigali Amendment, which amended the Protocol to include hydrofluorocarbons (HFCs) as part of its ambit. MOP 28 also adopted a number of substantive and procedural decisions. Substantive decisions included: essential-use exemptions (EUEs) and critical-use exemptions (CUEs); and the Terms of Reference (TOR) for the study on the 2018-2020 replenishment of the Multilateral Fund (MLF). Procedural decisions adopted include: budget; organizational issues related to the Technology and Economic Assessment Panel; and membership of Montreal Protocol bodies.”).

334 UNEP (2016) REPORT OF the TWENTY-EIGHTH MEETING OF the PARTIES to the MONTREAL Protocol on Substances that Deplate the Ozone Layer, UNEP/OzL.Pro.28/12, Annex I.

335 UNEP (2016) REPORT OF the TWENTY-EIGHTH MEETING OF the PARTIES to the MONTREAL Protocol on Substances that Deplate the Ozone Layer, UNEP/OzL.Pro.28/12, Annex I.

336 UNEP (2016) REPORT OF the TWENTY-EIGHTH MEETING OF the PARTIES to the MONTREAL Protocol on Substances that Deplate the Ozone Layer, UNEP/OzL.Pro.28/12, Annex I.

337 UNEP (2016) DECISION XXVIII/2: Decision Related to the Amendment Phasing Down Hydrofluorocarbons.

338 UNEP (2016) DECISION XXVIII/2: Decision Related to the Amendment Phasing Down Hydrofluorocarbons (“To apply this exemption for sub-sectors, contained in Appendix I of this decision, in parties with an average of at least two months per year over ten consecutive years with a peak monthly average temperature above 35 degrees Celsius.…”).

339 UNEP (2016) DECISION XXVIII/2: Decision Related to the Amendment Phasing Down Hydrofluorocarbons (“To make available an exemption for parties with high ambient temperature conditions where suitable alternatives do not exist for the specific sub-sector of use, as described below; To distinguish and separate this exemption from the essential-use and critical-use exemptions under the Montreal Protocol; To make this exemption effective and available as of the hydrofluorocarbon freeze date or other initial control obligation, with an initial duration of four years; To apply this exemption for sub-sectors, contained in Appendix I of this decision, in parties with an average of at least two months per year over ten consecutive years with a peak monthly average temperature above 35 degrees Celsius, where the party listed in Appendix II has formally notified the
Secretariat of its intent to use this exemption no later than one year before the hydrofluorocarbon freeze date, and every four years thereafter should it wish to extend the exemption; That any party operating under this high-ambient-temperature-exemption will report separately its production and consumption data for the sub-sectors to which the exemption applies….”; Appendix 1).

340 UNEP (2016) **Decision XXVIII/2: Decision Related to the Amendment Phasing Down Hydrofluorocarbons** (see Appendix 2); see also UNEP, OzonAction Fact Sheet, *The Kigali Amendment to the Montreal Protocol: HFC Phase-down* (2 February 2017).

341 UNEP (2016) **Decision XXVIII/1: Further Amendment of the Montreal Protocol** (“Each Party manufacturing Annex C, Group I, or Annex F substances shall ensure that for the twelve-month period commencing on 1 January 2020, and in each twelve-month period thereafter, its emissions of Annex F, Group II, substances generated in each production facility that manufactures Annex C, Group I, or Annex F substances are destroyed to the extent practicable using technology approved by the Parties in the same twelve-month period.”).

343 Press Release, White House Office of the Press Secretary, *FACT SHEET: Nearly 200 Countries Reach a Global Deal to Phase Down Potent Greenhouse Gases and Avoid Up to 0.5°C of Warming* (15 October 2016) (“This global deal will avoid more than 80 billion metric tons of carbon dioxide equivalent by 2050….”).

344 UNEP (2016) **Report of the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer**, UNEP/OzL.Pro.28/12, Decision XXXVIII/3 (“Recognizing that a phase-down of hydrofluorocarbons under the Montreal Protocol would present additional opportunities to catalyse and secure improvements in the energy efficiency of appliances and equipment….”).

345 UNEP (2016) **Report of the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer**, UNEP/OzL.Pro.28/12, Decision XXXVIII/3 (“Noting that the air-conditioning and refrigeration sectors represent a substantial and increasing percentage of global electricity demand, *Appreciating* the fact that improvements in energy efficiency could deliver a variety of co-benefits for sustainable development, including for energy security, public health and climate mitigation, *Highlighting* the large returns on investment that have resulted from modest expenditures on energy efficiency, and the substantial savings available for both consumers and Governments, 1. To request the Technology and Economic Assessment Panel to review energy efficiency opportunities in the refrigeration and air-conditioning and heat-pump sectors related to a transition to climate-friendly alternatives, including not-in-kind options; 2. To invite parties to submit to the Ozone Secretariat by May 2017, on a voluntary basis, relevant information on energy efficiency innovations in the refrigeration, air-conditioning and heat pump sectors; 3. To request the Technology and Economic Assessment Panel to assess the information submitted by parties on energy efficiency opportunities in the refrigeration and air-conditioning sectors during the transition to low-global-warming-potential and zero-global-warming-potential alternatives and to report thereon to the Twenty-Ninth Meeting of the Parties, in 2017.”).

346 Shah N., *et al.* (2015) *Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Air Conditioning*, Ernest Orlando Lawrence Berkeley National Laboratory, ES-7 (“We find that implementing refrigerant transition and energy efficiency improvement policies in parallel for room ACs, roughly doubles the benefit of either policy implemented in isolation.”)