Default image for pages

Long-term success requires that NDCs be aggressive in terms of ambition and comprehensive in terms of gasses and sectors covered. We call upon nations to include all GHGs in the next NDCs and specify additional ambitious quantitative contributions from methane and other non-CO₂ gasses; this is a critically important opportunity to increase overall mitigation ambition, to deliver reduced near-term warming, and to obtain important societal co-benefits.

The remaining carbon budget framework tracks progress towards the Paris Agreement’s goal to limit longer-term warming to well below 2 °C, but no analogous framework exists for constraining mid-century warming. Established single-basket methods of combining gases into CO2-equivalents using Global Warming Potentials (GWPs) lead to ambiguity over what combination of short- and long-lived emissions reductions are needed because they obscure the distinct warming impacts of each. We investigate to what extent a multi-basket approach that separates short-lived and long-lived pollutants can better estimate the likelihood for emission pathways to meet a near-term warming goal. We develop logistic regression models to categorize IPCC emission pathways (AR6) based on whether they exceed a mid-century temperature threshold. We focus on two baskets, using CO2 for long-lived and methane (CH4) for short-lived gases. For comparison, we consider several single-basket approaches (e.g. GWP100, GWP20, GWP*). We further apply our framework to a synthetic dataset covering a broader emissions space. Across both datasets, the two-basket outperforms all single-baskets. Using an illustrative near-term goal (1.7 °C), the two-basket approach reduces the magnitude of overshoot by a factor of 7 compared with the traditional single-basket. The two-basket’s advantage is smaller with the AR6 pathways, which we attribute to the high correlation between CO2 and CH4 emissions and confounding effects from other pollutants. Our results indicate that the two-basket approach better constrains overshoot magnitude, particularly if future emissions deviate from the AR6 assumption of correlated CO2 and CH4 reductions. Our approach allows the determination of a metric value and reduction target in the context of a chosen set of scenarios and temperature threshold; the outcome is a near-term methane-specific emissions budget that can be adopted by decisionmakers in a way that is analogous and complementary to the carbon budget. Future work could consider a third basket for very short-lived pollutants.

Anthropogenic methane (CH4) emissions increases from the period 1850–1900 until 2019 are responsible for around 65% as much warming as carbon dioxide (CO2) has caused to date, and large reductions in methane emissions are required to limit global warming to 1.5°C or 2°C. However, methane emissions have been increasing rapidly since ~2006. This study shows that emissions are expected to continue to increase over the remainder of the 2020s if no greater action is taken and that increases in atmospheric methane are thus far outpacing projected growth rates. This increase has important implications for reaching net zero CO2 targets: every 50 Mt CH4 of the sustained large cuts envisioned under low-warming scenarios that are not realized would eliminate about 150 Gt of the remaining CO2 budget. Targeted methane reductions are therefore a critical component alongside decarbonization to minimize global warming. We describe additional linkages between methane mitigation options and CO2, especially via land use, as well as their respective climate impacts and associated metrics. We explain why a net zero target specifically for methane is neither necessary nor plausible. Analyses show where reductions are most feasible at the national and sectoral levels given limited resources, for example, to meet the Global Methane Pledge target, but they also reveal large uncertainties. Despite these uncertainties, many mitigation costs are clearly low relative to real-world financial instruments and very low compared with methane damage estimates, but legally binding regulations and methane pricing are needed to meet climate goals.

Full citation: Shindell D, Sadavarte P, Aben I, Bredariol TdO, Dreyfus G, Höglund-Isaksson L, Poulter B, Saunois M, Schmidt GA, Szopa S, Rentz K, Parsons L, Qu Z, Faluvegi G and Maasakkers JD. The methane imperative. Front Sci (2024) 2:1349770. doi: 10.3389/fsci.2024.1349770

By phasing out production and consumption of most ozone-depleting substances (ODSs), the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) has avoided consequences of increased ultraviolet (UV) radiation and will restore stratospheric ozone to pre-1980 conditions by mid-century, assuming compliance with the phaseout. However, several studies have documented an unexpected increase in emissions and suggested unreported production of trichlorofluoromethane (CFC-11) and potentially other ODSs after 2012 despite production phaseouts under the Montreal Protocol. Furthermore, because most ODSs are powerful greenhouse gases (GHGs), there are significant climate protection benefits in collecting and destroying the substantial quantities of historically allowed production of chemicals under the Montreal Protocol that are contained in existing equipment and products and referred to as ODS “banks”. This technical note presents a framework for considering offsets to ozone depletion, climate forcing, and other environmental impacts arising from occurrences of unexpected emissions and unreported production of Montreal Protocol controlled substances, as recently experienced and likely to be experienced again. We also show how this methodology could be applied to the destruction of banks of controlled ODSs and GHGs or to halon or other production allowed under a Montreal Protocol Essential Use Exemption or Critical Use Exemption. Further, we roughly estimate the magnitude of offset each type of action could provide for ozone depletion, climate, and other environmental impacts that Montreal Protocol Parties agree warrant remedial action.

Fast action to mitigate non-CO2 climate pollutants, such as methane, including through implementing methane intensity requirements (such as via procurement specifications) for domestic and imported oil and gas, can have a significant role in reducing the likelihood of triggering catastrophic climate impacts as countries pursue carbon-neutrality goals. Without robust monitoring, reporting, and verification (MRV) of methane emissions, we will not be able to know the efficacy of methane mitigation policies and programs or whether we are meeting methane mitigation targets. Acting quickly to ensure that new investments in oil and gas infrastructure are built with enhanced MRV systems and methane intensity requirements in mind is essential to limiting risks of stranded assets and aligning with carbon-neutrality goals.

The Global Cooling Watch report, Keeping it Chill: How to meet cooling demands while cutting emissions – by the UN Environment Programme-led Cool Coalition – lays out sustainable cooling measures in three areas: passive cooling, higher-energy efficiency standards, and a faster phase down of climate-warming refrigerants. The report is released in support of the Global Cooling Pledge, a joint initiative between the United Arab Emirates as host of COP28 and the Cool Coalition. 

IGSD Chief Scientist Dr. Gabrielle Dreyfus served as the lead topical author of the chapter on refrigerants.

The transition away from the production and consumption of high global warming potential (GWP) hydrofluorocarbons (HFCs) under the 2016 Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer has prompted air conditioning, refrigeration, and heat pump equipment manufacturers to seek alternative refrigerants with lower direct climate impacts. Additional factors affecting alternative refrigerant choice include safety (i.e., flammability and toxicity), environmental, and thermodynamic constraints. At the same time, manufacturers are incentivized to seek refrigerants with higher energy efficiency, which saves on electricity costs and reduces indirect greenhouse gas emissions from electricity generation. The life cycle climate performance (LCCP) metric is commonly used to assess the combined direct and indirect climate impacts of refrigerant-use equipment. Here, we consider an additional impact on climate performance: the degradation of refrigerant in equipment, i.e., the direct climate impacts of high-GWP byproducts that can form as the result of adding trifluoroiodomethane (CF3I) to refrigerant blends to reduce flammability. Such a production of high-GWP gases could change the acceptability of CF3I-containing refrigerants. Further, it highlights the need to understand refrigerant degradation within equipment in calculations of the environmental acceptability of new cooling technology.

Heating and cooling demand for space conditioning and refrigeration accounts for around a fifth of global final energy consumption. Climate change, urbanization, and economic development have tripled electricity demand for cooling alone since the 1990s, with the majority coming from the use of inefficient cooling equipment, which burdens electricity grids, especially during peak hours. It is imperative to address the energy required to provide cooling. The Kigali Amendment to the Montreal Protocol addresses these needs by setting ambitious global targets to phase down refrigerants with high global warming potential while improving energy efficiency. Integrating energy efficiency and the refrigerant transition will contribute to economic security, well-being, energy access and security, and sustainability among the G20 countries.

Burning trees for energy delivers a one-two punch against climate change mitigation efforts. Harvesting woody biomass reduces the sequestration potential of forest carbon sinks, while the combustion of woody biomass releases large quantities of carbon into the air. Forest regrowth may not offset these emissions for many decades —well beyond the time the world has left to slow warming to avoid catastrophic impacts from climate change. With little time left to achieve a sustainable and inclusive future, burning forests for energy contributes to warming in the near-term and is not a viable climate solution

This article begins with an overview of the scientific background of why harvesting and burning forests for energy is not a viable solution to climate change or related challenges. This background section includes an explanation of key terminology used in the article. The next section presents the European Union (EU)’s Renewable Energy Directive as a case study on the consequences of including bioenergy in renewable energy policies. Following the case study, the article examines bioenergy policies in the United States and China—the world’s two largest greenhouse gas emitters. The article concludes with policy recommendations to focus government action towards reducing reliance on energy from forest biomass. These recommendations are that governments: (1) re-evaluate their bioenergy policies and ensure lifecycle accounting of forest bioenergy’s climate emissions associated with harvesting and burning forest biomass; (2) end incentives for harvesting forests for fuel and invest in forest preservation, low-emission energy, and low energy demand pathways; and (3) advance international consensus on the harms from forest bioenergy, specifically the impact on climate and biodiversity.

Environmentally harmful product dumping (“environmental dumping”) of new and used low-efficiency cooling appliances with obsolete ozone-depleting and greenhouse gas refrigerants in African countries impoverishes communities, hinders economic development, threatens ecological systems, and harms public health. The use of lowefficiency cooling appliances increases energy demand, leading to higher power plant emissions and limiting affordable energy access in African countries. These low-efficiency appliances and products contain ozone-depleting refrigerants with high global-warming potential (GWP) or ozone-safe refrigerants with high GWP. Environmental dumping of these appliances and products makes it more difficult for countries to meet their international climate obligations and for the world to meet the Paris Agreement’s climate change mitigation targets. Ghana faces high levels of environmental dumping, despite a national ban on importing used cooling appliances and established efficiency standards for new air conditioners and refrigerators. Through the Energy Commission’s Office of Renewable Energy, Energy Efficiency, & Climate Change (REEECC), the government of Ghana is partnering with the Institute for Governance & Sustainable Development (IGSD) to stop environmental dumping. This article provides a list of interventions that can be implemented by Ghana, by governments in countries that export to Ghana, and by industry and other stakeholders. Notably, these actions focus on the shared responsibility of exporting countries and manufacturers by calling on exporting countries to update and enhance enforcement of their laws, and on global manufacturers to stop exporting inefficient products with obsolete refrigerants to Ghana and other African countries.

Verified by MonsterInsights