The ongoing and projected impacts from human-induced climate change highlight the need for mitigation approaches to limit warming in both the near term (<2050) and the long term (>2050). We clarify the role of non-CO2 greenhouse gases and aerosols in the context of near-term and long-term climate mitigation, as well as the net effect of decarbonization strategies targeting fossil fuel (FF) phaseout by 2050. Relying on Intergovernmental Panel on Climate Change radiative forcing, we show that the net historical (2019 to 1750) radiative forcing effect of CO2 and non-CO2 climate forcers emitted by FF sources plus the CO2 emitted by land-use changes is comparable to the net from non-CO2 climate forcers emitted by non-FF sources. We find that mitigation measures that target only decarbonization are essential for strong long-term cooling but can result in weak near-term warming (due to unmasking the cooling effect of coemitted aerosols) and lead to temperatures exceeding 2 °C before 2050. In contrast, pairing decarbonization with additional mitigation measures targeting short-lived climate pollutants and N2O, slows the rate of warming a decade or two earlier than decarbonization alone and avoids the 2 °C threshold altogether. These non-CO2 targeted measures when combined with decarbonization can provide net cooling by 2030 and reduce the rate of warming from 2030 to 2050 by about 50%, roughly half of which comes from methane, significantly larger than decarbonization alone over this time frame. Our analysis demonstrates the need for a comprehensive CO2 and targeted non-CO2 mitigation approach to address both the near-term and long-term impacts of climate disruption.
Scientific studies show that fast actions to reduce near-term warming are essential to slowing self-reinforcing climate feedbacks and avoiding irreversible tipping points. Yet cutting CO2 emissions only marginally impacts near-term warming. This study identifies two of the most effective mitigation strategies to limit near-term warming beyond CO2 mitigation, namely reducing short-lived climate pollutants (SLCPs) and promoting targeted nature-based solutions (NbS), and comprehensively reviews the latest scientific progress in these fields. Studies show that quickly reducing SLCP emissions, particularly hydrofluorocarbons (HFCs), methane, and black carbon, from all relevant sectors can avoid up to 0.6 °C of warming by 2050. Additionally, promoting targeted NbS that protect and enhance natural carbon sinks, including in forests, wetlands, grasslands, and agricultural lands, can avoid emissions of 23.8 Gt of CO2e per year in 2030, without jeopardizing food security and biodiversity. Based on the scientific evidence, the paper provided a series of policy recommendations on SLCPs and NbS.
The global phasedown of hydrofluorocarbon (HFC) refrigerants under the Kigali Amendment to the Montreal Protocol will make a crucial contribution to slowing climate change and meeting the goals of the 2015 Paris Agreement. An even faster phasedown could be achieved with a more extensive replacement of high-GWP HFCs with commercially available low-GWP alternatives in refrigeration and air conditioning equipment. Climate emissions also can be reduced by collecting HFCs at the end of the useful life of cooling equipment and either recycling or destroying them. Such strategies could avoid up to 0.5°C of warming by 2100.
This report is a comprehensive assessment of the climate and development benefits of efficient and climate-friendly cooling.