This document is the updated edition of the Recommendations for Climate Friendly Refrigerant Management and Procurement authored by the SPLC Climate Friendly Refrigerant Action Team. The Climate Friendly Refrigerant Action Team is dedicated to investigating global regulatory and voluntary programs to avoid and/or reduce emissions from high global warming potential (GWP) HFCs. This document identifies opportunities and specific procurement options 1) to avoid high GWP HFC refrigerants when purchasing new energy efficient refrigeration and air conditioning equipment, and 2) to reduce refrigerant leakage and service emissions. We invite you to read and put this work to use in your own procurement processes, and to offer additional insights and experiences to sharpen and improve the guidance over time.
In 2019, the Government of Morocco with industry and non-governmental partners organized the Morocco Banker’s Air Conditioner Buyers Club with an ambition to gain access at a competitive and affordable cost to room air conditioners (RACs) with high-efficiency and low global warming potential (GWP) refrigerants as mandated globally by the Montreal Protocol. In 2020 the Government of Morocco and the Morocco Banker’s AC Buyers Club have decided to replace older RACs with next-generation technology using more climate-friendly refrigerants. This report provides the indicative finding that the RAC replacement program planned by the Government of Morocco and partners will reduce power consumption by up to 70% with additional economic and climate benefits from the recovery and destruction in local cement kilns of obsolete HCFC and HFC GHG refrigerants.
This paper explains how investing in energy efficiency increases net employment, including as a result of the money saved by energy efficiency improvements being spent locally in support of household and community development. This higher efficiency also allows a sustained improvement in the quality of life with cleaner air, better health, less damage from climate change, and less spent on health care and recovery from climate disasters. Low income and otherwise disadvantaged communities in areas despoiled by fossil fuel extraction and combustion for energy and industry all benefit from clean renewable energy (solar, wind, hydroelectric, geothermal) and more affordable appliance operating costs.
The demand for air conditioners that provide thermal comfort is steadily growing across the African continent as consumers seek to improve their quality of life in the face of urbanization and rising global temperatures. Since 2016, Africa’s market for new split room air conditioners has grown by approximately 5%, annually. As manufacturing and industrialized economies place increasingly stringent standards on room ACs sold domestically, while allowing continued export of technology that cannot legally be sold in the country of export as a consequence of failure to meet environmental, safety, energy efficiency, or other product standards, importing countries risk becoming dumping grounds for inefficient, environmentally harmful products using obsolete refrigerants. Weak or non-existent energy performance standards and the lack of proactive anti-environmental dumping policies in many African countries have facilitated environmentally harmful dumping of inefficient, high-global warming potential cooling products into African markets.
This report details the extent of the problem across ten countries in North, West, East, and Southern Africa, ultimately providing policymakers with a set of solutions to encourage a transition toward highly-efficient, sustainable cooling technologies.
Mobile air conditioning (MAC) systems are a significant source of greenhouse gas (GHG) emissions from vehicles. This study, conducted by the International Council on Clean Transportation in partnership with IGSD, examines the GHG benefits and costs of switching to improved refrigerants and more efficient AC systems. This research is intended to support implementation of the Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer, which requires the phase-down of HFC refrigerants and also targets improvements in energy efficiency.
Urbanization, rising temperatures, and more frequent heat waves in India are driving cooling demand higher. Further, as living standards rise and electricity reaches more homes across India, sales of room air conditioners (ACs) are growing. The room AC stock has skyrocketed from 2 million units in 2006 to approximately 30 million units in 2017. Air conditioners are now viewed as a necessity for a healthy lifestyle, similar to the perception of refrigerator ownership in the 1990s. But, ACs also burden electric grids with greater peak power demand, leading to higher power plant fuel consumption and increasingly poor air quality. Increased AC use also exacerbates harmful climate change caused by emissions of carbon dioxide from power generation and the release of refrigerants such as hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs), potent heat trapping gases used in air conditioners. For the room AC market to grow sustainably, “climate-friendly” room ACs – those that are both energy efficient and use climate- safe refrigerant gases – are needed.
This factsheet provides an overview of the growing Indian AC market, strategies to advance climate- friendly ACs, and market opportunities under the Montreal Protocol.
Patents and other intellectual property such as know how are a complex issue for policy makers and civil society experts, especially considering the large number of patents involved and the sensitivity and confidentiality around licensing agreements. This paper does not attempt to find a solution to the patent debate. Rather, it examines developing country experiences in dealing with patents during earlier transitions under Montreal Protocol as well as highlights the key issues faced by Indian industry and policy makers.
With negotiations under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) considering limits on hydrofluorocarbons (HFCs) as potent greenhouse gases, this paper examines past transitions during the relatively short, but dynamic history of this international treaty. It focuses on past shifts from chlorofluorocarbons (CFCs) to hydrochlorofluorocarbons (HCFCs) to HFCs, with the goal of identifying lessons that can inform discussions aimed at transitioning from high-global warming potential (high-GWP) HFCs.
Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer are considering actions to phase down hydrofluorocarbons (HFCs) because of their contributions to climate change. One important issue raised by Article 5 Parties1 is the concern that patents on recently developed low-global warming alternatives could restrict access to or increase the costs of transitioning to these substitutes. This paper looks at how issues related to patents have previously impacted the phase-out of ozone-depleting substances by Article 5 Parties with a focus on the role played by the Protocol’s Multilateral Fund.