Default image for pages

The comprehensive carbon metric accounts for the fact that AC electricity use and the integrated carbon intensity of that electricity can be up to 48% higher than estimated using national “average” assumptions. Taking real-world operating conditions and the actual carbon intensity of electricity generation, transmission, and distribution at the end-use into consideration provides for a more accurate assessment of the significant climate and economic benefits from energy efficiency and power grid investment.

This article was published in ASHRAE Journal, November 2018. Copyright 2018 ASHRAE. Posted at www.ashrae.org.

The Kigali Amendment to the Montreal Protocol phases down the production and consumption of hydrofluorocarbon greenhouse gases that were once necessary to rapidly phase out ozone-depleting substances but are no longer needed. The Kigali Amendment complements the emission controls of the UNFCCC Kyoto Protocol and contributes to satisfying the “nationally determined contributions” to reduce greenhouse gas emissions pledged under the 2016 Paris Climate Agreement. In 2016, the International Institute of Refrigeration proposed using Life-Cycle Climate Performance metric for air-conditioning systems while summing up carbon-equivalent direct refrigerant emissions, indirect power plant greenhouse gas emissions, and carbon equivalent embodied emissions. This paper describes an Enhanced and Localized Life Cycle Climate Performance metric developed by a team of international experts to reflect real-life air conditioning system operations.

Verified by MonsterInsights