Default image for pages

The remaining carbon budget framework tracks progress towards the Paris Agreement’s goal to limit longer-term warming to well below 2 °C, but no analogous framework exists for constraining mid-century warming. Established single-basket methods of combining gases into CO2-equivalents using Global Warming Potentials (GWPs) lead to ambiguity over what combination of short- and long-lived emissions reductions are needed because they obscure the distinct warming impacts of each. We investigate to what extent a multi-basket approach that separates short-lived and long-lived pollutants can better estimate the likelihood for emission pathways to meet a near-term warming goal. We develop logistic regression models to categorize IPCC emission pathways (AR6) based on whether they exceed a mid-century temperature threshold. We focus on two baskets, using CO2 for long-lived and methane (CH4) for short-lived gases. For comparison, we consider several single-basket approaches (e.g. GWP100, GWP20, GWP*). We further apply our framework to a synthetic dataset covering a broader emissions space. Across both datasets, the two-basket outperforms all single-baskets. Using an illustrative near-term goal (1.7 °C), the two-basket approach reduces the magnitude of overshoot by a factor of 7 compared with the traditional single-basket. The two-basket’s advantage is smaller with the AR6 pathways, which we attribute to the high correlation between CO2 and CH4 emissions and confounding effects from other pollutants. Our results indicate that the two-basket approach better constrains overshoot magnitude, particularly if future emissions deviate from the AR6 assumption of correlated CO2 and CH4 reductions. Our approach allows the determination of a metric value and reduction target in the context of a chosen set of scenarios and temperature threshold; the outcome is a near-term methane-specific emissions budget that can be adopted by decisionmakers in a way that is analogous and complementary to the carbon budget. Future work could consider a third basket for very short-lived pollutants.

In 1974, Mario J. Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer, which protects Earth against the harmful effects of ultraviolet radiation [Molina and Rowland Nature 1974, 249, 810]. In 1975, Ramanathan warned that CFCs are powerful greenhouse gases (GHGs) and would rival carbon dioxide (CO2) in causing climate change if left unabated [Ramanathan Science 1975, 190, 50]. The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer (Protocol), arguably the most successful global environmental treaty in history, was enacted in response to these warnings. This Protocol has phased out almost 99% of the production and consumption of ozone depleting substances (ODSs). Other papers have explored the world avoided” by actions under the Protocol [Prather et al. Nature 1996, 381, 551; Newman et al. Atmos. Chem. Phys. 2009, 9, 2113; Morgenstern et al. Geophys. Res. Lett. 2008, 35, 1]. They concluded that the ozone layer would have been highly depleted across the globe by the mid-21st century without the Protocol and that the Protocol contributed significantly to reduce climate change. This paper explores what could have been achieved if the world had acted against the continued use of ODSs, which were both ozone-depleting and greenhouse gases, immediately after Molina and Rowland warned of stratospheric ozone depletion and Ramanathan warned of climate forcing using chemicals and technology that were already globally available in the mid-1970s. We show that such precautionary principle” actions would have reduced global ozone layer depletion, reduced the extent of the ozone hole, brought forward the dates for ozone layer recovery, and helped minimize climate change.

Inclusion of HFCs under the Montreal Protocol offers a path, starting in the short term, to preserve the climate benefits already achieved by this treaty.

Verified by MonsterInsights