Default image for pages

Cutting methane emissions is the fastest way to slow warming in the near term and keep the goal of limiting global warming to 1.5°C within reach. Methane plays an increasingly important role in China’s responses to climate change. This paper reviews a number of measures aimed at reducing its methane emissions China has adopted over the past few years and outlines significant opportunities remaining to maximize China’s climate mitigation impact.

By phasing out production and consumption of most ozone-depleting substances (ODSs), the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) has avoided consequences of increased ultraviolet (UV) radiation and will restore stratospheric ozone to pre-1980 conditions by mid-century, assuming compliance with the phaseout. However, several studies have documented an unexpected increase in emissions and suggested unreported production of trichlorofluoromethane (CFC-11) and potentially other ODSs after 2012 despite production phaseouts under the Montreal Protocol. Furthermore, because most ODSs are powerful greenhouse gases (GHGs), there are significant climate protection benefits in collecting and destroying the substantial quantities of historically allowed production of chemicals under the Montreal Protocol that are contained in existing equipment and products and referred to as ODS “banks”. This technical note presents a framework for considering offsets to ozone depletion, climate forcing, and other environmental impacts arising from occurrences of unexpected emissions and unreported production of Montreal Protocol controlled substances, as recently experienced and likely to be experienced again. We also show how this methodology could be applied to the destruction of banks of controlled ODSs and GHGs or to halon or other production allowed under a Montreal Protocol Essential Use Exemption or Critical Use Exemption. Further, we roughly estimate the magnitude of offset each type of action could provide for ozone depletion, climate, and other environmental impacts that Montreal Protocol Parties agree warrant remedial action.

Fast action to mitigate non-CO2 climate pollutants, such as methane, including through implementing methane intensity requirements (such as via procurement specifications) for domestic and imported oil and gas, can have a significant role in reducing the likelihood of triggering catastrophic climate impacts as countries pursue carbon-neutrality goals. Without robust monitoring, reporting, and verification (MRV) of methane emissions, we will not be able to know the efficacy of methane mitigation policies and programs or whether we are meeting methane mitigation targets. Acting quickly to ensure that new investments in oil and gas infrastructure are built with enhanced MRV systems and methane intensity requirements in mind is essential to limiting risks of stranded assets and aligning with carbon-neutrality goals.

Burning trees for energy delivers a one-two punch against climate change mitigation efforts. Harvesting woody biomass reduces the sequestration potential of forest carbon sinks, while the combustion of woody biomass releases large quantities of carbon into the air. Forest regrowth may not offset these emissions for many decades —well beyond the time the world has left to slow warming to avoid catastrophic impacts from climate change. With little time left to achieve a sustainable and inclusive future, burning forests for energy contributes to warming in the near-term and is not a viable climate solution

This article begins with an overview of the scientific background of why harvesting and burning forests for energy is not a viable solution to climate change or related challenges. This background section includes an explanation of key terminology used in the article. The next section presents the European Union (EU)’s Renewable Energy Directive as a case study on the consequences of including bioenergy in renewable energy policies. Following the case study, the article examines bioenergy policies in the United States and China—the world’s two largest greenhouse gas emitters. The article concludes with policy recommendations to focus government action towards reducing reliance on energy from forest biomass. These recommendations are that governments: (1) re-evaluate their bioenergy policies and ensure lifecycle accounting of forest bioenergy’s climate emissions associated with harvesting and burning forest biomass; (2) end incentives for harvesting forests for fuel and invest in forest preservation, low-emission energy, and low energy demand pathways; and (3) advance international consensus on the harms from forest bioenergy, specifically the impact on climate and biodiversity.

Environmentally harmful product dumping (“environmental dumping”) of new and used low-efficiency cooling appliances with obsolete ozone-depleting and greenhouse gas refrigerants in African countries impoverishes communities, hinders economic development, threatens ecological systems, and harms public health. The use of lowefficiency cooling appliances increases energy demand, leading to higher power plant emissions and limiting affordable energy access in African countries. These low-efficiency appliances and products contain ozone-depleting refrigerants with high global-warming potential (GWP) or ozone-safe refrigerants with high GWP. Environmental dumping of these appliances and products makes it more difficult for countries to meet their international climate obligations and for the world to meet the Paris Agreement’s climate change mitigation targets. Ghana faces high levels of environmental dumping, despite a national ban on importing used cooling appliances and established efficiency standards for new air conditioners and refrigerators. Through the Energy Commission’s Office of Renewable Energy, Energy Efficiency, & Climate Change (REEECC), the government of Ghana is partnering with the Institute for Governance & Sustainable Development (IGSD) to stop environmental dumping. This article provides a list of interventions that can be implemented by Ghana, by governments in countries that export to Ghana, and by industry and other stakeholders. Notably, these actions focus on the shared responsibility of exporting countries and manufacturers by calling on exporting countries to update and enhance enforcement of their laws, and on global manufacturers to stop exporting inefficient products with obsolete refrigerants to Ghana and other African countries.

Scientific studies show that fast actions to reduce near-term warming are essential to slowing self-reinforcing climate feedbacks and avoiding irreversible tipping points. Yet cutting CO2 emissions only marginally impacts near-term warming. This study identifies two of the most effective mitigation strategies to limit near-term warming beyond CO2 mitigation, namely reducing short-lived climate pollutants (SLCPs) and promoting targeted nature-based solutions (NbS), and comprehensively reviews the latest scientific progress in these fields. Studies show that quickly reducing SLCP emissions, particularly hydrofluorocarbons (HFCs), methane, and black carbon, from all relevant sectors can avoid up to 0.6 °C of warming by 2050. Additionally, promoting targeted NbS that protect and enhance natural carbon sinks, including in forests, wetlands, grasslands, and agricultural lands, can avoid emissions of 23.8 Gt of CO2e per year in 2030, without jeopardizing food security and biodiversity. Based on the scientific evidence, the paper provided a series of policy recommendations on SLCPs and NbS.

This paper describes how the Ghana Energy Commission and the Environmental Protection Agency’s National Ozone Unit have joined forces in a comprehensive strategy to access and implement low-global warming potential (GWP) and energy-efficient cooling technologies that protect the Earth’s climate and stratospheric ozone layer. This strategy, in line with the objectives of the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol): 1) integrates upgraded energy efficiency labels with refrigerant metrics; 2) strengthens minimum energy performance standards (MEPS); 3) prohibits the dumping of used cooling appliances; 4) uses the OzonAction informal Prior Informed Consent (iPIC) mechanism to facilitate communications among national authorities on the import and sale of appliances containing or using obsolete refrigerants scheduled for phase out or phase down under the Montreal Protocol; and 6) asks Parties to the Montreal Protocol to enact and enforce regulations that help stop the dumping of used and new cooling equipment in export-market countries wanting to leapfrog obsolete appliances that waste energy and force climate change.

This paper addresses what has been described as a primary concern related to patents: even if chemical companies in Montreal Protocol Article 5 Parties can develop their own methods of producing low-GWP refrigerant hydrofluoroolefin (HFO) or using them in the products they make, they could be prevented (absent a license) from selling their products at home and in key markets abroad in countries where restrictive patents have been granted to other companies, at least until the time when challenges to patents are decided or these patents expire.

This paper reviews the status of patents granted on HFO-1234yf in automotive air conditioning (AC) in the US, Europe, and China, covering the largest automotive manufacturing regions in the world. This paper primarily focuses on patents on the use of HFO-1234yf in automobiles, as opposed to patents on the manufacture of HFO-1234yf.

The Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) can be further strengthened to control ozone-depleting substances and hydrofluorocarbons used as feedstocks to provide additional protection of the stratospheric ozone layer and the climate system while also mitigating plastics pollution. The feedstock exemptions were premised on the assumption that feedstocks presented an insignificant threat to the environment; experience has shown that this is incorrect. Through its adjustment procedures, the Montreal Protocol can narrow the scope of feedstock exemptions to reduce inadvertent and unauthorized emissions while continuing to exempt production of feedstocks for time-limited, essential uses. This upstream approach can be an effective and efficient complement to other efforts to reduce plastic pollution. Existing mechanisms in the Montreal Protocol such as the Assessment Panels and national implementation strategies can guide the choice of environmentally superior substitutes for feedstock-derived plastics. This paper provides a framework for policy makers, industries, and civil society to consider how stronger actions under the Montreal Protocol can complement other chemical and environmental treaties.

As the world warms, the growing use of air conditioners (“ACs”) and other cooling equipment becomes essential for human comfort and public health. In addition, cooling-equipment energy and refrigerant consumption also presents tremendous climate mitigation opportunities. This article highlights China’s “Same Line, Same Standard and Same Quality” policy (“Same-Line Policy” or “Policy”), intended to support economic recovery from the COVID-19 pandemic and address the export challenges that have negatively affected Chinese industries and products on the global market. The Policy encourages manufacturers of consumer and industrial products to sell products within China that were produced for markets outside China according to standards exceeding those for products produced for the Chinese market. The Policy, and the associated information and business platforms that the government established to ensure policy success, aim to improve the domestic economic situation through consumption of products previously destined for export markets but which are not being sold because of the economic downturn during the pandemic. Policies like these, representing a course of action that China’s leadership endorses, can drive changes in Chinese law, including changes that address loopholes in the law that allow environmentally harmful activities to continue. The Same-Line Policy provides an opportunity for global climate mitigation, public health, and other benefits that should not be missed.

Verified by MonsterInsights