This paper presents a pioneering benefit assessment framework and indicative quantification of the community and national benefits of operating cost savings from super-efficient room air conditioning (RAC) that are spent locally and not for imported fuel, electricity, and power plants. It also estimates the benefits of expanded employment to replace and service the new RACs and to recover and destroy obsolete and contaminated ozone-depleting and greenhouse gas (GHG) refrigerants. Shifting spending from foreign to local purchase improves balance of trade, strengthens domestic currency, and creates jobs and prosperity as funds circulate in the local economy. Added to that are the community benefits of mass replacement of RACs and their service to maintain energy efficiency over the life of the appliance. This community impact grows over time as savings accumulate on avoided fuel and energy infrastructure and as the income from the new jobs circulates in the local economy.
This paper explains how Moroccan government authorities are cooperating with international organizations in finding the way forward with a combination of more stringent Minimum Energy Performance Standards (MEPS), private and public AC Buyers Clubs, and economic incentives such as import duties that favour efficiency and caps the global warming potential (GWP) of refrigerants used in imported room ACs. The Morocco AC Buyers Club will use comprehensive calculations of the carbon footprint and economic impact of room ACs tailored to local Moroccan climate and use conditions.
The Montreal Protocol has halted 99% of global production of chemical substances that deplete stratospheric ozone, which protects life on earth from the harmful effects of ultraviolet (UVB) radiation. UVB causes skin cancer and cataracts, suppresses the human immune system, destroys plastics, and damages agricultural crops and natural ecosystems. Because ozone-depleting substances (ODSs) are powerful greenhouse gases, the Montreal Protocol also protects climate. From the authors’ perspectives in multiple roles as environmental entrepreneurs, practitioners, and authorities, this paper explains how individuals, companies, and military organizations researched, developed, commercialized and implemented alternatives to ODSs that are also safer for climate. With the benefit of hindsight, the authors reflect on what was neglected or done badly under the Montreal Protocol and present lessons learned on how Montreal Protocol institutions can be renewed and revitalized to phase down hydrofluorocarbons (HFCs).
The comprehensive carbon metric accounts for the fact that AC electricity use and the integrated carbon intensity of that electricity can be up to 48% higher than estimated using national “average” assumptions. Taking real-world operating conditions and the actual carbon intensity of electricity generation, transmission, and distribution at the end-use into consideration provides for a more accurate assessment of the significant climate and economic benefits from energy efficiency and power grid investment.
This article was published in ASHRAE Journal, November 2018. Copyright 2018 ASHRAE. Posted at www.ashrae.org.
Environmental dumping is a practice historically associated with the export of hazardous product waste from a developed country for irresponsible and often illegal disposal in a developing country. Now, with the industrialization and globalization of China and other developing countries, environmental dumping can involve both developing and developed countries as origin and destination. This dumping can be especially harmful to attempts to control under the Montreal Protocol ozone-depleting and climate-forcing chemical substances and/or products requiring unnecessarily high energy consumption. While developing country Parties to the Montreal Protocol are allowed to delay their phasedown of climate-forcing and ozone-depleting hydrofluorocarbons (HFCs) during a multi-year grace period, there are advantages to earlier implementation when superior alternatives are already available at reasonable costs, as is the case for many uses of HFCs today. Thus, developing countries can benefit under the Protocol from setting controls for environmental dumping. This article aims to give policymakers, especially those in developing countries, a legal and policy “toolkit” that can be used to stop unwanted environmental dumping. It includes an examination of the history of environmental dumping, illustration of such dumping in practice, a detailed explanation and examination of the legal and policy tools, and a summary of the consequences of environmental dumping.
The Kigali Amendment to the Montreal Protocol phases down the production and consumption of hydrofluorocarbon greenhouse gases that were once necessary to rapidly phase out ozone-depleting substances but are no longer needed. The Kigali Amendment complements the emission controls of the UNFCCC Kyoto Protocol and contributes to satisfying the “nationally determined contributions” to reduce greenhouse gas emissions pledged under the 2016 Paris Climate Agreement. In 2016, the International Institute of Refrigeration proposed using Life-Cycle Climate Performance metric for air-conditioning systems while summing up carbon-equivalent direct refrigerant emissions, indirect power plant greenhouse gas emissions, and carbon equivalent embodied emissions. This paper describes an Enhanced and Localized Life Cycle Climate Performance metric developed by a team of international experts to reflect real-life air conditioning system operations.
The chapter covers fluorinated GHGs, namely hydrofluorocarbons (HFCs). The Deep Decarbonization Pathways Project reports seek to reduce HFC and hydrochlorofluorocarbon (HCFC) emissions in the United States by 96 million metric tons (MMT) CO2 equivalent (CO2eq) by 2050. HFCs replaced chlorofluorocarbons (CFCs) and HCFCs that have been phased out under the Montreal Protocol on Substances That Deplete the Ozone Layer because they were depleting the stratospheric ozone layer. Due largely to their use as substitutes for CFCs and HCFCs, HFCs are the fastest growing GHGs in the United States, growing from 0.3 MMT CO2eq in 1990 to 149.4 MMT CO2eq in 2010. EPA, many states, and businesses have already begun acting to speed the phasedown of HFCs in the United States. There are a number of legal pathways at the fed- eral, state, and local levels that would further reduce emissions of HFCs and speed markets to a safe transition to environmentally friendly alternatives. Additional climate benefits can be realized by simultaneously improving the energy efficiency of equipment during the transition away from high-global warming potential (GWP) refrigerants.
This New Climate Economy Working Paper was written as a supporting document for the 2015 report of the Global Commission on the Economy and Climate, Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. It reflects the research conducted for Section 2.10 of the full report and is part of a series of 10 Working Papers. It reflects the recommendations made by the Global Commission- 1. Major companies should commit to phasing out HFCs through cost-effective cooperative action programmes such as those of the Consumer Goods Forum and Refrigerants, Naturally! 2. The Parties to the UNFCCC should also be encouraged to include an HFC phase-down in their “intended nationally determined contributions” (INDCs), and reporting on HFC emissions should be extended to all countries. 3. Incorporating HFC production and consumption into the Montreal Protocol would provide significant near-term gains to slow climate change, and could lead to avoiding 1.1–1.7 Gt CO2e of annual GHG emissions per year by 2030.
Ozone protection was the result of professional confidence and sacrifice; brilliant interdisciplinary science and the good fortune of an ozone hole with no explanation other than manufactured fluorocarbons; and industry and government leadership inspired by the realization that life on earth was in jeopardy. In response to the 1974 warning by Dr. Mario Molina and Dr. F. Sherwood Rowland that chlorofluorocarbons (CFCs) were destroying the stratospheric ozone layer, almost 100 ozone-depleting substances (ODSs) have been phased out under the auspices of the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol). This paper describes how the United Nations, national governments, citizens, and companies came together pragmatically for the public good. It describes seminal events where individuals and organizational leaders set the stage, came to agreement, and implemented the technology that protects stratospheric ozone and climate. These individuals, who became “Ozone Champions,” often acted alone and with great courage when they were sideways and crossways to the organizations where they were employed. This paper also describes how practical lessons from the successful Montreal Protocol can guide our global society and how stakeholders can positively influence each other to achieve comprehensive atmospheric protection—including halting climate change. The final section considers how the approaches of the Montreal Protocol can dismiss skepticism and embrace technical optimism in implementing cleaner coal and carbon sequestration, even as society aggressively pursues low-carbon renewable energy, energy efficiency, and a transition to sustainable lifestyles.
This special issue on Ozone Layer Protection and Climate Change reflects the leadership of the Association of Environmental Studies and Sciences (AESS) in drawing interdisciplinary attention to important environmental issues. The authors are scientists, diplomats, regulatory authorities, environmental activists, and scholars who are intimately involved in actions that protect the stratospheric ozone layer and climate. This issue provides new information and insightful analytic summaries of critical issues in the protection of the atmospheric environment and is also an urgent appeal to professors and students to place atmospheric protection prominently in thinking, research, teaching, and professional activities related to “sustainable development.” The authors describe and document the bold steps taken by individual and institutional leaders involved in the Montreal Protocol to thwart catastrophic ozone layer destruction, which incidentally, albeit on a sound scientific basis, addressed climate change. Because of strong leadership, effective networking, and concepts such the “precautionary principle” and “start and strengthen,” the Montreal Protocol is considered to be the most successful global environmental treaty. For example, thanks to innovative approaches adopted by both industry and government, the Montreal Protocol has already replaced about 85 % of ozone-depleting greenhouse gases with low global warming potential alternatives and increased product energy efficiency. But hardwork is needed to overcome the important challenges that remain, such as the phasedown of the 15 % of alternatives that are high global warming potential hydrofluorocarbons. Scientists, government officials, scholars, and business people must push for higher standards to achieve the combined goals of reducing both ozone-depleting substances and greenhouse gases.