Default image for pages

The remaining carbon budget framework tracks progress towards the Paris Agreement’s goal to limit longer-term warming to well below 2 °C, but no analogous framework exists for constraining mid-century warming. Established single-basket methods of combining gases into CO2-equivalents using Global Warming Potentials (GWPs) lead to ambiguity over what combination of short- and long-lived emissions reductions are needed because they obscure the distinct warming impacts of each. We investigate to what extent a multi-basket approach that separates short-lived and long-lived pollutants can better estimate the likelihood for emission pathways to meet a near-term warming goal. We develop logistic regression models to categorize IPCC emission pathways (AR6) based on whether they exceed a mid-century temperature threshold. We focus on two baskets, using CO2 for long-lived and methane (CH4) for short-lived gases. For comparison, we consider several single-basket approaches (e.g. GWP100, GWP20, GWP*). We further apply our framework to a synthetic dataset covering a broader emissions space. Across both datasets, the two-basket outperforms all single-baskets. Using an illustrative near-term goal (1.7 °C), the two-basket approach reduces the magnitude of overshoot by a factor of 7 compared with the traditional single-basket. The two-basket’s advantage is smaller with the AR6 pathways, which we attribute to the high correlation between CO2 and CH4 emissions and confounding effects from other pollutants. Our results indicate that the two-basket approach better constrains overshoot magnitude, particularly if future emissions deviate from the AR6 assumption of correlated CO2 and CH4 reductions. Our approach allows the determination of a metric value and reduction target in the context of a chosen set of scenarios and temperature threshold; the outcome is a near-term methane-specific emissions budget that can be adopted by decisionmakers in a way that is analogous and complementary to the carbon budget. Future work could consider a third basket for very short-lived pollutants.

The ongoing and projected impacts from human-induced climate change highlight the need for mitigation approaches to limit warming in both the near term (<2050) and the long term (>2050). We clarify the role of non-CO2 greenhouse gases and aerosols in the context of near-term and long-term climate mitigation, as well as the net effect of decarbonization strategies targeting fossil fuel (FF) phaseout by 2050. Relying on Intergovernmental Panel on Climate Change radiative forcing, we show that the net historical (2019 to 1750) radiative forcing effect of CO2 and non-CO2 climate forcers emitted by FF sources plus the CO2 emitted by land-use changes is comparable to the net from non-CO2 climate forcers emitted by non-FF sources. We find that mitigation measures that target only decarbonization are essential for strong long-term cooling but can result in weak near-term warming (due to unmasking the cooling effect of coemitted aerosols) and lead to temperatures exceeding 2 °C before 2050. In contrast, pairing decarbonization with additional mitigation measures targeting short-lived climate pollutants and N2O, slows the rate of warming a decade or two earlier than decarbonization alone and avoids the 2 °C threshold altogether. These non-CO2 targeted measures when combined with decarbonization can provide net cooling by 2030 and reduce the rate of warming from 2030 to 2050 by about 50%, roughly half of which comes from methane, significantly larger than decarbonization alone over this time frame. Our analysis demonstrates the need for a comprehensive CO2 and targeted non-CO2 mitigation approach to address both the near-term and long-term impacts of climate disruption.

The global phasedown of hydrofluorocarbon (HFC) refrigerants under the Kigali Amendment to the Montreal Protocol will make a crucial contribution to slowing climate change and meeting the goals of the 2015 Paris Agreement. An even faster phasedown could be achieved with a more extensive replacement of high-GWP HFCs with commercially available low-GWP alternatives in refrigeration and air conditioning equipment. Climate emissions also can be reduced by collecting HFCs at the end of the useful life of cooling equipment and either recycling or destroying them. Such strategies could avoid up to 0.5°C of warming by 2100. 

This report is a comprehensive assessment of the climate and development benefits of efficient and climate-friendly cooling.

There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs), in addition to reducing emissions of CO2. The SLCPs include methane (CH4), black carbon aerosols (BC), tropospheric ozone (O3) and hydrofluorocarbons (HFCs). Recent studies have estimated that by mitigating emissions of CH4, BC, and O using available technologies, about 0.5 to 0.6◦C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential) HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5◦C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2◦C warming threshold during this century.

Issue of Our Planet, the magazine of the United Nations Environment Programme.

Verified by MonsterInsights