Default image for pages

There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs), in addition to reducing emissions of CO2. The SLCPs include methane (CH4), black carbon aerosols (BC), tropospheric ozone (O3) and hydrofluorocarbons (HFCs). Recent studies have estimated that by mitigating emissions of CH4, BC, and O using available technologies, about 0.5 to 0.6◦C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential) HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5◦C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2◦C warming threshold during this century.

Stratospheric ozone, global warming, and the principle of unintended consequences—An ongoing science and policy success story.

This paper explores the business case for Indian AC companies to phase down HFCs and move to a future based on climate-friendly refrigerants and energy-efficient equipment designs.

Issue of Our Planet, the magazine of the United Nations Environment Programme.

The level of ambition of the public and policy makers to protect the climate is currently far too low to slow the accelerating pace of climate impacts. Ambition can be strengthened using strategies that disaggregate the overall climate problem into manageable pieces, borrow existing laws and institutions to take fast action following a ‘start and strengthen’ approach. This is illustrated by the strategy to phase down the production and consumption of high global warming potential hydrofluorocarbons under the Montreal Protocol. Such an approach could cut the rate of global warming in half for the next several decades, and even more in the Arctic and other climate vulnerable regions. This can provide fast success and build the sense of urgent optimism needed to raise ambition to do more to address carbon dioxide emissions – the single largest contributor to climate change.

Assessing the contributions and co-benefits of the Montreal Protocol treaty.

Inclusion of HFCs under the Montreal Protocol offers a path, starting in the short term, to preserve the climate benefits already achieved by this treaty.

The Integrated Assessment of Black Carbon and Tropospheric Ozone addresses the short-lived cli- mate forcers (SLCFs) that also have an impact on air quality. Its findings on both the state of scientific knowledge and existing policy options to cut emissions come from 50 authors convened by UNEP and WMO. Previous assessments have often studied either the impacts on climate from such pollutants or the direct effects of air pollution on human health and ecosystems, but not both in an integrated manner. This report gives a comprehensive assessment of the multiple benefits of practi- cal measures to reduce emissions of black carbon – a key component of soot – and the gases leading to the formation of tropospheric ozone, especially methane.

Issue of Our Planet, the magazine of the United Nations Environment Programme.

Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of ‘‘dangerous anthropogenic interference’’ (DAI). Scientific and policy literature refers to the need for ‘‘early,’’ ‘‘urgent,’’ ‘‘rapid,’’ and ‘‘fast-action’’ mitigation to help avoid DAI and abrupt climate changes. We define ‘‘fast-action’’ to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agree- ments can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast- action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions.

Verified by MonsterInsights