The IGSD Primer on Cutting Methane provides decision-makers with clarity on the science of methane mitigation and why action is urgently needed; current and emerging mitigation opportunities by sector; national, regional, and international efforts that can inform emergency global action on methane; and financing initiatives to secure support for fast methane reduction. This Methane Primer provides the scientific and policy rationale for decision-makers to achieve the “strong, rapid, and sustained” cuts to methane emissions necessary to slow global warming in the near term and limit the risk of triggering tipping points. The Methane Primer also supports the need for research and development of technologies to remove methane from the atmosphere at scale.
Demand for hydrofluorocarbon (HFC) refrigerants used as substitutes for ozone-depleting substances is growing in India and is estimated to continue growing at a high rate through the middle of this century. HFCs, although not directly ozone-depleting, are highly potent greenhouse gases subject to a global phasedown under the 2016 Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer. As of 20 January 2022, 130 Parties have ratified the Kigali Amendment, including India. This analysis evaluates scenarios for India’s HFC demand trajectory compared to likely control obligations under the Kigali Amendment. It is based on current and projected markets for HFC-using equipment and types of refrigerants utilized now and likely to be used in the future. Sectors considered in this work include mobile air conditioning, stationary air conditioning, refrigeration, and foam blowing agents. Results suggest that India’s annual HFC demand under current market trends could reach 76 MMT CO2-equivalent (CO2e) in 2030 and 197 MMT CO2e in 2050, from 23 MMT CO2e in 2020, making no changes to the current mix of HFCs in use. The Kigali Amendment requires for compliance that India freeze its HFC consumption in 2028 at a projected level of 59–65 MMT CO2e and phase down progressively over the following 29 years; in that case, annual Indian HFC demand would peak in 2030 at a projected 57 MMT CO2e and fall to 8 MMT CO2e by 2050. This trajectory would avoid cumulative HFC use of 2.2 GT CO2e through 2050 versus the current market trends. If actions are taken to accelerate the refrigerant transition in stationary air conditioning by five years, India could peak its annual HFC demand by 2028 at 40 MMT CO2e and avoid additional cumulative HFC demand of 337 MMT CO2e between 2025 and 2050, exceeding its obligations under the Kigali Amendment.
This paper describes how the Ghana Energy Commission and the Environmental Protection Agency’s National Ozone Unit have joined forces in a comprehensive strategy to access and implement low-global warming potential (GWP) and energy-efficient cooling technologies that protect the Earth’s climate and stratospheric ozone layer. This strategy, in line with the objectives of the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol): 1) integrates upgraded energy efficiency labels with refrigerant metrics; 2) strengthens minimum energy performance standards (MEPS); 3) prohibits the dumping of used cooling appliances; 4) uses the OzonAction informal Prior Informed Consent (iPIC) mechanism to facilitate communications among national authorities on the import and sale of appliances containing or using obsolete refrigerants scheduled for phase out or phase down under the Montreal Protocol; and 6) asks Parties to the Montreal Protocol to enact and enforce regulations that help stop the dumping of used and new cooling equipment in export-market countries wanting to leapfrog obsolete appliances that waste energy and force climate change.
This evaluation identifies the 12 papers that formed the scientific foundation for the Montreal Protocol parties to take bold steps to phase down HFCs via the Kigali Amendment. These thoroughly researched and clearly presented scientific papers, which were among those contributing to SAP presentations at Meetings of the Parties and were directly read and considered by treaty negotiators from party countries, made the link between HFCs and climate change apparent and persuaded skeptics and stakeholders to take action. All told, the coauthors of these dozen papers include about 40 scientists from 10 countries, reflecting the substantial degree of international attention to the problems posed by HFCs and scientific collaboration to address them.
Today, built into each cooling appliance and insulating foam in nearly every household, building, and car in America and across most of the world, there sits a type of fluorinated gas called a hydrochlorofluorocarbon (HCFC) and/or a hydrofluorocarbon (HFC). When leaked out into the atmosphere, HCFCs cause the depletion of Earth’s ozone layer and both HCFCs and HFCs are extremely potent climate warmers.
There is a huge opportunity for chemical producers, equipment manufacturers, federal and state policymakers, major corporations, and maintenance professionals to come together to prevent as many of these potent chemicals as possible from making it into the atmosphere. This report makes a first attempt at laying out the starting point for an approach, referred to here as Lifecycle Refrigerant Management (LRM). LRM focuses on avoiding and reducing refrigerant leaks, promoting refrigerant recovery, and increasing reclamation rates to mitigate unnecessary refrigerant use and emissions.
This chapter provides open-access teaching materials for COP 26 — the Glasgow Climate Summit — held in November 2021. It was written as a supplement to the 6th edition of the casebook, International Environmental Law and Policy, but can be used as a stand-alone assignment for any environmental law course. It contains separate sections on Finishing Paris, NDC Commitments, The Glasgow Climate Pact, Working Toward a Just Transition, Sectoral Commitments Outside NDCs, and Non-State Commitments, followed by a Questions and Discussion section.
This paper addresses what has been described as a primary concern related to patents: even if chemical companies in Montreal Protocol Article 5 Parties can develop their own methods of producing low-GWP refrigerant hydrofluoroolefin (HFO) or using them in the products they make, they could be prevented (absent a license) from selling their products at home and in key markets abroad in countries where restrictive patents have been granted to other companies, at least until the time when challenges to patents are decided or these patents expire.
This paper reviews the status of patents granted on HFO-1234yf in automotive air conditioning (AC) in the US, Europe, and China, covering the largest automotive manufacturing regions in the world. This paper primarily focuses on patents on the use of HFO-1234yf in automobiles, as opposed to patents on the manufacture of HFO-1234yf.
The Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) can be further strengthened to control ozone-depleting substances and hydrofluorocarbons used as feedstocks to provide additional protection of the stratospheric ozone layer and the climate system while also mitigating plastics pollution. The feedstock exemptions were premised on the assumption that feedstocks presented an insignificant threat to the environment; experience has shown that this is incorrect. Through its adjustment procedures, the Montreal Protocol can narrow the scope of feedstock exemptions to reduce inadvertent and unauthorized emissions while continuing to exempt production of feedstocks for time-limited, essential uses. This upstream approach can be an effective and efficient complement to other efforts to reduce plastic pollution. Existing mechanisms in the Montreal Protocol such as the Assessment Panels and national implementation strategies can guide the choice of environmentally superior substitutes for feedstock-derived plastics. This paper provides a framework for policy makers, industries, and civil society to consider how stronger actions under the Montreal Protocol can complement other chemical and environmental treaties.
In 1974, Mario J. Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer, which protects Earth against the harmful effects of ultraviolet radiation [Molina and Rowland Nature 1974, 249, 810]. In 1975, Ramanathan warned that CFCs are powerful greenhouse gases (GHGs) and would rival carbon dioxide (CO2) in causing climate change if left unabated [Ramanathan Science 1975, 190, 50]. The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer (Protocol), arguably the most successful global environmental treaty in history, was enacted in response to these warnings. This Protocol has phased out almost 99% of the production and consumption of ozone depleting substances (ODSs). Other papers have explored the “world avoided” by actions under the Protocol [Prather et al. Nature 1996, 381, 551; Newman et al. Atmos. Chem. Phys. 2009, 9, 2113; Morgenstern et al. Geophys. Res. Lett. 2008, 35, 1]. They concluded that the ozone layer would have been highly depleted across the globe by the mid-21st century without the Protocol and that the Protocol contributed significantly to reduce climate change. This paper explores what could have been achieved if the world had acted against the continued use of ODSs, which were both ozone-depleting and greenhouse gases, immediately after Molina and Rowland warned of stratospheric ozone depletion and Ramanathan warned of climate forcing using chemicals and technology that were already globally available in the mid-1970s. We show that such “precautionary principle” actions would have reduced global ozone layer depletion, reduced the extent of the ozone hole, brought forward the dates for ozone layer recovery, and helped minimize climate change.
Life Cycle Climate Performance (LCCP) is a widely accepted metric to evaluate the carbon footprint of air conditioning (AC) systems “from cradle to grave.” This paper: (1) reviews the invention and evolution of LCCP, including a comprehensive timeline and bibliography; (2) documents the successful application of LCCP in the replacement of HFC-410A with HFC-32 in room air conditioners; (3) compares the conceptual frameworks and the operational approaches; and 4) reflects on the drawbacks of current LCCP research and points out possible future work.
The major policy-relevant findings are: 1. The indirect emissions caused by energy consumption is 70 to 80 percent of the LCCP of AC systems in most countries but will decline in importance as electric power supply shifts rapidly from fossil fuel to renewable energy sources, which have near-zero carbon intensity; 2. The embodied greenhouse gas (GHG) emissions in refrigerant manufacture are, in most cases, negligible but the physical and chemical properties are crucial for system optimization for low carbon footprint; 3. The LCCP metric can be used for multiple purposes such as refrigerant selection and AC system architecture optimization; and 4. Data limitations in material manufacturing and the carbon intensity of electric power are the most significant challenges. Finally, this paper describes a variety of methods to fill in data gaps, including the correction factor method, the data-driven method, and the database searching method. The next-generation LCCP will be an enhanced evaluation process considering local climate, heat islands, and local power supply characteristics.